The current study characterized the taxonomic composition of the uterine and vaginal bacterial communities during estrous synchronization up to timed artificial insemination (TAI). Postpartum beef cows (n = 68) were subjected to pre-synchronization step 21 d prior to TAI (day -21), followed by an industry standard 7 Day Co-Synch on day -9 and TAI on day 0. Uterine and vaginal flushes were collected on days -21, -9, and -2 of the protocol and pH was immediately recorded. Pregnancy was determined by transrectal ultrasound on day 30. Bacterial DNA was extracted and sequenced targeting the V1 to V3 hypervariable regions of the 16S rRNA bacterial gene. Results indicated 34 different phyla including 792 different genera present between the uterus and vagina. Many differences in the relative abundance of bacterial phyla and genera occurred between resulting pregnancy statuses and among protocol days (P < 0.05). At day -2, multiple genera were present in >1% abundance of nonpregnant cows but <1% abundance in pregnant cows (P < 0.05). Uterine pH increased in nonpregnant cows but decreased in pregnant cows (P > 0.05). Overall, our study indicates bacterial phyla and genera abundances shift over time and may potentially affect fertility by altering the reproductive tract environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776284PMC
http://dx.doi.org/10.1093/jas/skz212DOI Listing

Publication Analysis

Top Keywords

taxonomic composition
8
uterus vagina
8
uterine vaginal
8
tai day
8
bacterial phyla
8
phyla genera
8
bacterial
6
day
6
bacterial taxonomic
4
composition postpartum
4

Similar Publications

Symbiotic microbiota are important drivers of host behaviour, health, and fitness. While most studies focus on humans, model organisms, and domestic or economically important species, research investigating the role of host microbiota in wild populations is rapidly accumulating. Most studies focus on the gut microbiota; however, skin and other glandular microbiota also play an important role in shaping traits that may impact host fitness.

View Article and Find Full Text PDF

Identification and characterization of GRAS genes in passion fruit (Passiflora edulis Sims) revealed their roles in development regulation and stress response.

Plant Cell Rep

January 2025

Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

Twenty-nine GRAS genes were identified in passion fruit, the N-terminal regions and 3D (three-dimensional) structures were closely related with their tissue-specific expression patterns. Candidate PeGRASs for enhancing stress resistance were identified. Passion fruit (Passiflora edulis Sims) is a tropical fruit crop with significant edible and ornamental value, but its growth and development are highly sensitive to environmental conditions.

View Article and Find Full Text PDF

Genome-wide identification of carboxyesterase family members reveals the function of GeCXE9 in the catabolism of parishin A in Gastrodia elata.

Plant Cell Rep

January 2025

Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.

GeCXE9 can catalyze the hydrolysis of parishin A via two pathways during the medicinal processing of Gastrodia elata. Gastrodia elata Bl. is used in traditional Chinese medicine for its bioactive compounds, particularly phenols.

View Article and Find Full Text PDF

PURPOSE OF REVIEW: A Ketogenic diet (KD; a diet comprised of 75% fat, 20% protein and 5% carbohydrates) has gained much popularity in recent years, especially regarding neurogliomas (or "gliomas"). This review critically assesses literature on the application of KD throughout the cancer continuum from a Medical Nutrition Therapy (MNT) perspective. RECENT FINDINGS: 2021 revised classification standards for Central Nervous System (CNS) tumors are available.

View Article and Find Full Text PDF

Insights into the functionality of biofilm-forming bacterial consortia as bioavailability enhancers towards biodegradation of pyrene in hydrocarbon-contaminated soil.

J Environ Manage

January 2025

Sustainable Environmental Processes (Environmental Bioprocesses), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India. Electronic address:

Hydrophobic organic compounds (HOCs), such as pyrene, pose significant challenges for microbial-based remediation in soil due to limited substrate availability and the sustainability of augmented microbes. Research targets are to investigate the potential of biofilm-forming bacterial cells to enhance pyrene bioavailability and biodegradation in two different hydrocarbon-contaminated soil microcosms, employing microbiological, molecular, and chemical analysis validated through statistical tools. The microcosm augmented with strong biofilm bacterial consortia (A) significantly enhanced pyrene availability by 1-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!