Novel strategies have been proposed for articular cartilage damage occurring during osteoarthritis (OA) and -among these- Extracorporeal Shock Wave Therapy (ESWT), intra-articular injections of Platelet-Rich Plasma (PRP) or Hyaluronic Acid (HA) revealed encouraging results. To investigate the possible mechanisms responsible for those clinical benefits, we established primary cultures of human chondrocytes derived from cartilage explants and measured the in vitro effects of ESW, PRP and HA therapies. After molecular/morphological cell characterization, we assessed those effects on the functional activities of the chondrocyte cell cultures, at the protein and molecular levels. ESWT significantly prevented the progressive dedifferentiation that spontaneously occurs during prolonged chondrocyte culture. We then attested the efficiency of all such treatments to stimulate the expression of markers of chondrogenic potential such as SOX9 and COL2A, to increase the Ki67 proliferation index as well as to antagonize the traditional marker of chondrosenescence p16INK4a (known as Cdkn2a). Furthermore, all our samples showed an ESW- and HA-mediated enhancement of migratory and anti-inflammatory activity onto the cytokine-rich environment characterizing OA. Taken together, those results suggest a regenerative effect of such therapies on primary human chondrocytes in vitro. Moreover, we also show for the first time that ESW treatment induces the surface expression of major hyaluronan cell receptor CD44 allowing the increase of COL2A/COL1A ratio upon HA administration. Therefore, this work suggests that ESW-induced CD44 overexpression enhances the in vitro cell susceptibility of human chondrocytes to HA, presumably favouring the repair of degenerated cartilage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599220PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218740PLOS

Publication Analysis

Top Keywords

human chondrocytes
12
hyaluronic acid
8
extracorporeal shock
8
shock wave
8
wave therapy
8
therapy eswt
8
acid platelet-rich
4
platelet-rich plasm
4
plasm extracorporeal
4
eswt promote
4

Similar Publications

Unlabelled: Cartilage and joint damage can lead to cartilage degeneration. Bone marrow mesenchymal stem cells (BMSCs) have the potential to address cartilage damage. Hence, this study probed the mechanism of BMSC-extracellular matrix (BMSC-ECM) in promoting damaged chondrocyte repair by regulating the Notch1/RBPJ pathway.

View Article and Find Full Text PDF

Single-Cell RNA sequencing reveals mitochondrial dysfunction in microtia chondrocytes.

Sci Rep

January 2025

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Microtia is a congenital malformation characterized by underdevelopment of the external ear. While chondrocyte dysfunction has been implicated in microtia, the specific cellular abnormalities remain poorly understood. This study aimed to investigate mitochondrial dysfunction in microtia chondrocytes using single-cell RNA sequencing.

View Article and Find Full Text PDF

The activation of acid-sensing ion channel 1a (ASIC1a) in response to extracellular acidification leads to an increase in extracellular calcium influx, thereby exacerbating the degeneration of articular chondrocytes in rheumatoid arthritis (RA). It has been suggested that the inhibition of extracellular calcium influx could potentially impede chondrocyte ferroptosis. The cystine transporter, solute carrier family 7 member 11 (SLC7A11), is recognized as a key regulator of ferroptosis.

View Article and Find Full Text PDF

Single-cell transcriptomic analysis of chondrocytes in cartilage and pathogenesis of osteoarthritis.

Genes Dis

March 2025

CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

Chondrocyte is considered the only cell type in cartilage. However, the cell heterogeneity of chondrocytes in human articular cartilage is still not well defined, which hinders our understanding of the pathogenesis of osteoarthritis (OA). Here, we constructed a single-cell transcriptomic atlas of chondrocytes in healthy cartilage and identified nine chondrocyte subsets including homeostatic chondrocytes, proliferate fibrochondrocytes, and hypertrophic chondrocytes (HTC).

View Article and Find Full Text PDF

Downregulation of HSP47 Triggers ER Stress-mediated Apoptosis of Hypertrophic Chondrocytes Contributing to T-2 toxin-induced Cartilage Damage.

Environ Pollut

January 2025

School of Public Health, Health Science Center, Xi'an Jiaotong University, NHC Key Laboratory of Environment and Endemic Diseases, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China. Electronic address:

T-2 toxin contamination in food and feed is a growing global concern, with its toxic effects on developing cartilage remaining poorly understood. In this study, we constructed an animal model using 4-week-old male Sprague-Dawley rats, which were administered T-2 toxin (200 ng/g body weight per day) by gavage for one month. Histological analysis showed a significant reduction in hypertrophic chondrocytes and increased caspase-3 expression and TUNEL staining in the deep cartilage zone of T-2 toxin-treated rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!