As compared to bulk solids, large surface-to-volume ratio of two-dimensional (2D) materials may open new opportunities for postsynthesis introduction of impurities into these systems by, for example, vapor deposition. However, it does not work for graphene or h-BN, as the dopant atoms prefer clustering on the surface of the material instead of getting integrated into the atomic network. Using extensive first-principles calculations, we show that counterintuitively most transition metal (TM) atoms can be embedded into the atomic network of the pristine molybdenum dichalcogenides (MoDCs) upon atom deposition at moderate temperatures either as interstitials or substitutional impurities, especially in MoTe, which has the largest spacing between the host atoms. We further demonstrate that many impurity configurations have localized magnetic moments. By analyzing the trends in energetics and values of the magnetic moments across the periodic table, we rationalize the results through the values of TM atomic radii and the number of (s + d) electrons available for bonding and suggest the most promising TMs for inducing magnetism in MoDCs. Our results are in line with the available experimental data and should further guide the experimental effort toward a simple postsynthesis doping of 2D MoDCs and adding new functionalities to these materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b01555DOI Listing

Publication Analysis

Top Keywords

transition metal
8
metal atoms
8
atoms embedded
8
molybdenum dichalcogenides
8
atomic network
8
magnetic moments
8
atoms
4
embedded two-dimensional
4
two-dimensional molybdenum
4
dichalcogenides add
4

Similar Publications

In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters.

View Article and Find Full Text PDF

Objectives: This study aimed to assess the vertical misfit at the implant-abutment interface in external and internal connections across various implant brands, comparing original milled titanium abutments with laser-sintered cobalt-chromium (Co-Cr) abutments.

Materials And Methods: A total of 160 implants from four different brands were utilized, with 80 featuring external connections (EC) and 80 internal connections (IC). Original milled titanium abutments (n = 160) and Co-Cr laser-sintered abutments (n = 160) were randomly attached to each connection type, following the manufacturer's recommended torque.

View Article and Find Full Text PDF

Nutritional immunity, a key component of the vertebrate innate immune response, involves the modulation of zinc availability to limit the growth of pathogens. counteracts host-imposed zinc starvation through metabolic adaptations, including reprogramming of gene expression and activating efficient metal uptake systems. To unravel how zinc shortage contributes to the complexity of bacterial adaptation to the host environment, it is critical to use model systems that mimic fundamental features of -related diseases in humans.

View Article and Find Full Text PDF

Desmoid fibromatosis (DF) is a rare low-grade benign myofibroblastic neoplasm that originates from fascia and muscle striae. For giant chest wall DF, surgical resection offer a radical form of treatment and the causing defects usually need repair and reconstruction, which can restore the structural integrity and rigidity of the thoracic cage. The past decade witnessed rapid advances in the application of various prosthetic material in thoracic surgery.

View Article and Find Full Text PDF

Objectives: This study aims to analyze the biomechanics of three kinds of rigid internal fixation methods for condylar head fractures.

Methods: A three dimensional finite element model of the normal mandible was constructed. It was then used to prepare condylar head fracture finite element model and three kinds of rigid internal fixation finite element model (unilateral tension screw, bilateral tension screw, tension screw+titanium plate).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!