Objective: Critical decisions regarding resection boundaries for epilepsy surgery are often based on results of electrical stimulation mapping (ESM). Despite the potentially serious implications for postoperative functioning, age-referenced data that might facilitate the procedure are lacking. Age might be particularly relevant, as pediatric ESM studies have shown a paucity of language sites in young children followed by a rapid increase at approximately 8-10 years. Beyond adolescence, it has generally been assumed that the language system remains stable, and therefore, potential age-related changes across the adult age span have not been examined. However, increasing age during adulthood is associated with both positive and negative language-related changes, such as a broadening vocabulary and increased word finding difficulty. Because most patients who undergo ESM are adults, we aimed to determine the potential impact of age on the incidence of ESM-identified naming sites across the adult age span in patients with refractory epilepsy.

Methods: We analyzed clinical language ESM results from 47 patients, ages 17-64 years, with refractory dominant-hemisphere epilepsy. Patients had comparable location and number of cortical sites tested. The incidence of naming sites was examined as a function of age, and compared between younger and older adults.

Results: Significantly more naming sites were found in older than younger adults, and age was found to be a significant predictor of number of naming sites identified.

Significance: Unlike the developmental changes that coincide with increased naming sites in children, increased naming sites in older adults might signify greater vulnerability of the language system to disruption. Because preservation of language sites can limit the extent of the resection, and thereby reduce the likelihood of seizure freedom, further work should aim to determine the clinical relevance of increased naming sites in older adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687550PMC
http://dx.doi.org/10.1111/epi.16097DOI Listing

Publication Analysis

Top Keywords

naming sites
32
sites older
12
increased naming
12
sites
11
age
8
increasing age
8
language sites
8
language system
8
adult age
8
age span
8

Similar Publications

Predicting drug-target interaction (DTI) stands as a pivotal and formidable challenge in pharmaceutical research. Many existing deep learning methods only learn the high-dimensional representation of ligands and targets on a small scale. However, it is difficult for the model to obtain the potential law of combining pockets or multiple binding sites on a large scale.

View Article and Find Full Text PDF

The development of accurate yet fast quantum mechanical methods to calculate the anharmonic vibrational spectra of large molecules is one of the major goals of ongoing developments in this field. This study extensively explores and validates a hybrid electronic basis set approach for anharmonic vibrational calculations, where the molecule is segregated into different computational layers, and such layers are then treated with different levels of electronic basis sets. Following the system-bath model, the atoms corresponding to the active sites are treated in more accurate but computationally slower, large basis set and the rest of the atoms in less accurate but computationally faster, small basis set to construct the anharmonic hybrid potential energy surface (PES).

View Article and Find Full Text PDF

As a Group 2B carcinogen, accurate and efficient detection for Fumonisin B1 (FB1) is essential. The emergence of aptamers presents a viable solution to meet this demand. In this study, a truncated aptamer named Apt40 was developed, showcasing remarkable binding affinity to FB1.

View Article and Find Full Text PDF

Structure of the Kaposi's sarcoma-associated herpesvirus gB in post-fusion conformation.

J Virol

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA.

Discovered in 1994 in lesions of an AIDS patient, Kaposi's sarcoma-associated herpesvirus (KSHV) is a member of the gammaherpesvirus subfamily of the family, which contains a total of nine that infect humans. These viruses all contain a large envelope glycoprotein, glycoprotein B (gB), that is required for viral fusion with host cell membrane to initial infection. Although the atomic structures of five other human herpesviruses in their postfusion conformation and one in its prefusion conformation are known, the atomic structure of KSHV gB has not been reported.

View Article and Find Full Text PDF

MultiTax-human: an extensive and high-resolution human-related full-length 16S rRNA reference database and taxonomy.

Microbiol Spectr

January 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Considering that the human microbiota plays a critical role in health and disease, an accurate and high-resolution taxonomic classification is thus essential for meaningful microbiome analysis. In this study, we developed an automatic system, named MultiTax pipeline, for generating taxonomy from full-length 16S rRNA sequences using the Genome Taxonomy Database and other existing reference databases. We first constructed the MultiTax-human database, a high-resolution resource specifically designed for human microbiome research and clinical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!