In this paper, a novel data-driven predictive iterative learning control (DDPILC) scheme based on a radial basis function neural network (RBFNN) is proposed for a class of repeatable nonaffine nonlinear discrete-time systems subjected to nonrepetitive external disturbances. First, by utilizing the dynamic linearization technique (DLT) with a newly introduced and unknown system parameter pseudopartial derivative (PPD) and designing a new RBFNN estimation algorithm along the iterative learning axis for addressing the unknown PPD and the unknown nonrepetitive external disturbances, a data-driven prediction model is established. It is theoretically shown that by constructing a composite energy function (CEF) with respect to the modeling error for the first time, the convergence of the modeling error via the proposed DLT-based RBFNN modeling method can be guaranteed, and the convergence speed is tunable. Then, a DDPILC with a disturbance compensation term is designed, and the convergence of the tracking control error is analyzed. Finally, simulations of a train operation system reveal that even if the train suffers from randomly varying load disturbances and nonlinear running resistance, the proposed scheme can make both the modeling error and the tracking control error decrease successively with increasing operation number.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2019.2919441DOI Listing

Publication Analysis

Top Keywords

iterative learning
12
modeling error
12
data-driven predictive
8
predictive iterative
8
learning control
8
nonaffine nonlinear
8
nonrepetitive external
8
external disturbances
8
tracking control
8
control error
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!