Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An accurate description of muscular activity plays an important role in the clinical diagnosis and rehabilitation research. The electromyography (EMG) is the most used technique to make accurate descriptions of muscular activity. The EMG is associated with the electrical changes generated by the activity of the motor neurons. Typically, to decode the muscular activation during different movements, a large number of individual motor neurons are monitored simultaneously, producing large amounts of data to be transferred and processed by the computing devices. In this paper, we follow an alternative approach that can be deployed locally on the sensor side. We propose a neuromorphic implementation of a spiking neural network (SNN) to extract spatio-temporal information of EMG signals locally and classify hand gestures with very low power consumption. We present experimental results on the input data stream using a mixed-signal analog/digital neuromorphic processor. We performed a thorough investigation on the performance of the SNN implemented on the chip, by: first, calculating PCA on the activity of the silicon neurons at the input and the hidden layers to show how the network helps in separating the samples of different classes; second, performing classification of the data using state-of-the-art SVM and logistic regression methods and a hardware-friendly spike-based read-out. The traditional algorithm achieved a classification rate of [Formula: see text] and [Formula: see text], respectively, and the spiking learning method achieved [Formula: see text]. The power consumption of the SNN is [Formula: see text], showing the potential of this approach for ultra-low power processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBCAS.2019.2925454 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!