Single image super-resolution (SISR) aims to recover a high-resolution image from a given low-resolution version of it. Video super-resolution (VSR) targets a series of given images, aiming to fuse them to create a higher resolution outcome. Although SISR and VSR seem to have a lot in common, most SISR algorithms do not have a simple and direct extension to VSR. VSR is considered a more challenging inverse problem, mainly due to its reliance on a sub-pixel accurate motion-estimation, which has no parallel in SISR. Another complication is the dynamics of the video, often addressed by simply generating a single frame instead of a complete output sequence. In this paper, we suggest a simple and robust super-resolution framework that can be applied to single images and easily extended to video. Our work relies on the observation that denoising of images and videos is well-managed and very effectively treated by a variety of methods. We exploit the plug-and-play-prior framework and the regularization-by-denoising (RED) approach that extends it, and show how to use such denoisers in order to handle the SISR and the VSR problems using a unified formulation and framework. This way, we benefit from the effectiveness and efficiency of existing image/video denoising algorithms, while solving much more challenging problems. More specifically, harnessing the VBM3D video denoiser, we obtain a strongly competitive motion-estimation free VSR algorithm, showing tendency to a high-quality output and fast processing.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2019.2924173DOI Listing

Publication Analysis

Top Keywords

video super-resolution
8
denoising algorithms
8
sisr vsr
8
vsr
6
video
5
sisr
5
unified single-image
4
single-image video
4
super-resolution
4
super-resolution denoising
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!