Bioanalytical challenges in development of ultrasensitive Home Brew assays: a case study using IL-13.

Bioanalysis

BioAnalytical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.

Published: June 2019

IL-13 is a biomarker of type 2 inflammation that plays a critical role in asthma. IL-13 is present in serum at subpicogram levels. Simoa HD-1 technology was evaluated for the detection and quantitation of IL-13 by using a commercially available IL-13 kit and compared with a Simoa HomeBrew (HB) IL-13 assay as well as Immunological Multi-Parameter Chip Technology (IMPACT), an internal Roche platform. Performance of the assays was evaluated based on preset criteria for sensitivity, standard curve and controls' accuracy and precision, reproducibility and parallelism of endogenous analyte in serum samples. The Simoa platform offered high assay sensitivity for evaluation of IL-13. This paper discusses the challenges and considerations when evaluating kits and/or developing HomeBrew assays using ultrasensitive platforms.

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio-2019-0012DOI Listing

Publication Analysis

Top Keywords

il-13
7
bioanalytical challenges
4
challenges development
4
development ultrasensitive
4
ultrasensitive brew
4
brew assays
4
assays case
4
case study
4
study il-13
4
il-13 il-13
4

Similar Publications

In prednisone-dependent severe asthma, uncontrolled sputum eosinophilia is associated with increased numbers of group 2 innate lymphoid cells (ILC2s). These cells represent a relatively steroid-insensitive source of interleukin-5 (IL-5) and IL-13 and are considered critical drivers of asthma pathology. The abundance of ILC subgroups in severe asthma with neutrophilic or mixed granulocytic (both eosinophilic and neutrophilic) airway inflammation, prone to recurrent infective exacerbations, remains unclear.

View Article and Find Full Text PDF

The role of mTOR activation in steroid-resistant asthma: insights from particulate matter-induced mouse model and patient studies.

Inflamm Res

January 2025

Institute of Allergy and Clinical Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.

Particulate matter (PM) exposure has been proposed as one of the causes of steroid resistance. However, studies investigating this using patient samples or animals are still lacking. Therefore, in this study, we aimed to investigate the changes in cytokines and mTOR (mammalian target of rapamycin) activation in patients with steroid resistant asthma and the role of mTOR in a mouse model of steroid resistant asthma induced by PM.

View Article and Find Full Text PDF

Our objectives were to explore epidermal barrier defects in dogs with atopic dermatitis and to determine whether the defects are genetically determined or secondary to skin inflammation. First, the expression of filaggrin, corneodesmosin, and claudin1, analyzed using indirect immunofluorescence in skin biopsies collected from 32 healthy and 32 dogs with atopic dermatitis, was weaker in the atopic skin ( .003).

View Article and Find Full Text PDF

The Immune System: An Arrow to the Heart and Principles of Cardioimmunology as an Emerging Branch of Medicine.

Curr Vasc Pharmacol

January 2025

Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy.

Background: Cardioimmunology is an emerging branch of medicine whose development has been facilitated by more sophisticated diagnostic procedures. Recent studies have mainly focused on the immune response during myocardial infarction (MI), and there is evidence that both resident and external immune cells participate in acute inflammatory disease, as well as tissue remodeling. Cardiac Innate Immune Cells: Following MI, macrophages, dendritic cells (DCs) and mast cells (MCs) are the main players in the heart.

View Article and Find Full Text PDF

Introduction: In recent years, the understanding of atopic dermatitis (AD) pathogenetic mechanisms has expanded and now it is recognized that Th2 immune axis dysregulation is pivotal to AD pathogenesis. The advent of biological drugs and small molecules have marked a revolution in the treatment of AD. Dupilumab, targeting IL-4 and IL-13, has been the first to demonstrate efficacy in treating moderate to severe AD by modulating type-2 inflammation pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!