Human pluripotent stem cells (hPSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are very attractive cell sources for the treatment of diabetes mellitus, because numerous cells can be obtained using their infinite proliferation potential to overcome the paucity of donor islets. Advances in differentiation protocols make it possible to generate glucose responsive hPSC-beta cells, which can ameliorate hyperglycemia in diabetic mice. These protocols have mainly been based on an adherent culture system. However, in clinical applications, suspension culture methods are more suitable for large-scale culture. There are reports that suspension culture and spheroid formation promote differentiation in various cell types, including hPSCs, but, to our knowledge, there are no reports comparing gene expression patterns between suspension and adherent cultured human iPSCs (hiPSCs) during definitive endoderm (DE) differentiation. In this study, we chose several stage marker genes, not only for DE but also for posterior epiblast and primitive streak, and we examined their time course expression in suspension and adherent cultures by quantitative PT-PCR (qPCR), western blot, flow cytometry and immunocytochemistry. Our results demonstrate that expressions of these marker genes are faster and more strongly induced in suspension culture than in adherent culture during the DE differentiation process, indicating that suspension culture favors DE differentiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1387/ijdb.180251sy | DOI Listing |
J Chem Ecol
January 2025
Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
Plants emit green leaf volatiles (GLVs) in response to biotic and abiotic stress. Receiver plants perceive GLVs as alarm cues resulting in activation of defensive or protective mechanisms. While this is well documented, it is not known how GLVs are perceived by receiver cells and what the structural determinants are for GLV activity.
View Article and Find Full Text PDFTzu Chi Med J
September 2024
School of Medicine, Tzu Chi University, Hualien, Taiwan.
Objectives: Gastric cancer (GC) is one of the most malignant tumors. Mounting studies highlighted gastric cancer stem cells (GCSCs) were responsible for the failure of treatment due to recurrence and drug resistance of advanced GC. However, targeted therapy against GCSC for improving GC prognosis suffered from lack of suitable models and molecular targets in terms of personalized medicine.
View Article and Find Full Text PDFWorld J Orthop
January 2025
Department of Orthopedics, The 940 Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu Province, China.
Background: Tuberculosis is among the most devastating infectious diseases worldwide. Spinal tuberculosis is not easy to detect at an early stage, which without effective treatment often leads to spinal deformity and spinal cord damage which in turn cause complications such as paraplegia and quadriplegia. In this study, we established a model using three concentrations of bacteria and carried out a comprehensive evaluation of the model by imaging, general observations, and histopathological and bacteriological studies.
View Article and Find Full Text PDFBiofabrication
January 2025
Mechanical Engineering, Tsinghua University, A421 Lee Shau Kee Building, Tsinghua Uniersity, Haidian District, Beijing, 100084, CHINA.
3D bioprinting of plant cells has emerged as a promising technology for plant cell immobilization and related applications. Despite the numerous progress in mammal cell printing, the bioprinting of plant cells is still in its infancy and needs further investigation. Here, we present a systematic study on optimizing the 3D bioprinting of plant cells, using carrots as an example, towards enhanced resolution and cell viability.
View Article and Find Full Text PDFBioTech (Basel)
January 2025
Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk 630090, Russia.
The development of efficient producers of recombinant pharmaceuticals based on plant cell suspension cultures is a pressing challenge in modern applied science. A primary limitation of plant cell cultures is their relatively low yield of the target protein. One strategy to enhance culture productivity involves reducing cell aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!