Microorganisms obtained from the deep sea are a rich source of marine natural products with distinctive chemical structures and bioactivities. In this review, we will provide a retrospective of outstanding research within the scope of deep-sea (≥1000 m) microbial natural products, which has produced up to 442 compounds by the end of 2017. Approximetely, 60% of these structures have demonstrated various biological activities with more than 30% showing cytotoxic function. In this review, we particularly summarize those successful research on secondary metabolites produced by deep-sea derived microorganisms with inclusion of structural characteristics, biological activities, together with biogenetic origins and taxonomic features of the source microorganisms, from which, we expect to provide more comprehensive understanding of small molecules obtained from deep-sea environment and benefit the ongoing scholarly endeavors in the search for novel pharmaceutical agents from the deep-sea derived microorganisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929867326666190618153950 | DOI Listing |
J Agric Food Chem
January 2025
CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China.
Ten cytochalasin derivatives, including six new methylthioether-containing chaetoglobosins (thiochaetoglobosins A-F, ), a new related congener (18-nor-prochaetoglobosin II, ), and three known unsulfured counterparts (), were isolated and identified from AS-506, an endozoic fungus isolated from a deep-sea sponge, which was collected from Magellan Seamounts in the Western Pacific Ocean. Their structures were determined by extensive interpretation of the spectroscopic and X-ray crystallographic data, as well as by ECD calculations. Structurally, thiochaetoglobosins A-F () represent the first examples of chaetoglobosin derivatives containing a methylthioether group in the molecules, while 18-nor-prochaetoglobosin II () is the first 18-nor-chaetoglobosin derivative.
View Article and Find Full Text PDFBMC Genomics
December 2024
Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung, West Java, Indonesia.
Background: The marine environment boasts distinctive physical, chemical, and biological characteristics. While numerous studies have delved into the microbial ecology and biological potential of the marine environment, exploration of genetically encoded, deep-sea sourced secondary metabolites remains scarce. This study endeavors to investigate marine bioproducts derived from deep-sea water samples at a depth of 1,000 m in the Java Trench, Indonesia, utilizing both culture-dependent and whole-genome sequencing methods.
View Article and Find Full Text PDFJ Asian Nat Prod Res
December 2024
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Three new terpenoid derivatives (1,6,7)-hydrobenzosydowic acid (), (1 ,6,7)-hydrobenzosydowic acid (), and (7 ,10)-11-dehydroxy-iso-10-hydroxysydowic acid (), along with the known analogues ()-2-(1-(4-nitrobenzoyl)pyrrolidine-2-carboxamido)benzoic acid () and trihydroxybutyl ester of 4-carboxydiorcinol () were isolated from the deep-sea-derived fungus DFFSCS007. Their structures were determined by spectroscopic analysis. Compound with a nitrobenzene group was isolated from nature for the first time.
View Article and Find Full Text PDFBioorg Chem
December 2024
State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China. Electronic address:
Prenylated indole diketopiperazines represent a diverse array of alkaloids with complex chemical scaffolds and with a wide range of biological activities. Aiming to discover bioactive metabolites with structural novelty, genomic annotation in association with the MS/MS-based molecular networking demonstrated a deep-sea derived fungus Aspergillus puulaauensis F77 containing a profile of diketopiperazines. Targeted separation of the cultured fungus led to the isolation of 19 undescribed austamide-type diketopiperazines namely versicoines A-S.
View Article and Find Full Text PDFMar Drugs
December 2024
CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China.
Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A-D (-) and two acorane analogues furacoranes A and B ( and ), were characterized from the culture extract of the cold-seep derived fungus CS-280 co-cultured with autoclaved QDIO-4. All the six compounds were highly oxygenated especially and with infrequent epoxyethane and tetrahydrofuran ring systems. The structures of - were established on the basis of detailed interpretation of 1D and 2D NMR and MS data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!