AI Article Synopsis

Article Abstract

Glutamate is a prominent neurotransmitter responsible for excitatory synaptic transmission and is taken up by sodium-dependent excitatory amino acid transporters (EAATs) on astrocytes to maintain synaptic homeostasis. Here, we report that N-myc downstream regulated gene 2 (NDRG2), a known tumor suppressor, is required to facilitate astroglial glutamate uptake and protect the brain from glutamate excitotoxicity after ischemia. NDRG2 knockout (Ndrg2) mice exhibited an increase in cerebral interstitial glutamate and a reduction in glutamate uptake into astrocytes. The ability of NDRG2 to control EAAT-mediated glutamate uptake into astrocytes required NDRG2 to interact with and promote the function of Na/K-ATPase β1, which could be disrupted by a Na/K-ATPase β1 peptide. The deletion of NDRG2 or treatment with the Na/K-ATPase β1 peptide significantly increased neuronal death upon a glutamate challenge and aggravated brain damage after ischemia. Our findings demonstrate that NDRG2 plays a pivotal role in promoting astroglial glutamate uptake from the interstitial space and protecting the brain from glutamate excitotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067740PMC
http://dx.doi.org/10.1007/s12975-019-00708-9DOI Listing

Publication Analysis

Top Keywords

glutamate uptake
20
na/k-atpase β1
12
glutamate
10
ndrg2
8
interstitial glutamate
8
astroglial glutamate
8
brain glutamate
8
glutamate excitotoxicity
8
uptake astrocytes
8
β1 peptide
8

Similar Publications

Positron-emission tomography (PET) offers high sensitivity for cancer diagnosis. However, small-molecule-based probes often exhibit insufficient accumulation in tumor sites, while nanoparticle-based agents typically have limited delivery efficiency. To address this challenge, this study proposes a novel PET imaging probe, Ga-CBT-PSMA, designed for prostate cancer.

View Article and Find Full Text PDF

Background: Current diagnostic imaging modalities have limited ability to differentiate between malignant and benign pancreaticobiliary disease, and lack accuracy in detecting lymph node metastases. F-Prostate-Specific Membrane Antigen (PSMA) PET/CT is an imaging modality used for staging of prostate cancer, but has incidentally also identified PSMA-avid pancreatic lesions, histologically characterized as pancreatic ductal adenocarcinoma (PDAC). This phase I/II study aimed to assess the feasibility of F-PSMA PET/CT to detect PDAC.

View Article and Find Full Text PDF

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.

View Article and Find Full Text PDF

Background: nowadays, the photoacoustic imaging is in the mainstream of cancer theranostics. In this study the nanoparticles with previously proven photoacoustic imaging properties, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!