As organisms face variation in energetic challenges and physiological demands, they often respond with reversible changes in behavior, physiology, and morphology, described as phenotypic flexibility. From the magnitude of phenotypic change, we can infer the energetic challenges of different life stages. We studied phenotypic flexibility in a population of reproductive and pre-migratory female insectivorous bats (Tadarida brasiliensis). While female reproductive demands are well described in insectivorous bats, there are questions regarding the demands of migration. Our objective was to measure phenotypic flexibility to assess the cost of autumn migration compared to reproduction in an insectivorous bat. We measured plasma triglycerides to quantify foraging rate, and body composition (body mass and individual organ mass) of T. brasiliensis throughout the summer season (from arrival in spring through pre-migration/migration departure in autumn) according to the female reproductive cycle. We found phenotypic changes during pre-migration/migration similar to periods of high-energy demand during reproduction (e.g., late pregnancy and lactation). Most notably, bats weighed as much during peak pregnancy, as they did during migration, and the rapid mass gain from post-lactation through the migratory period was due to a combination of hyperphagia and hypertrophy of digestive organs. Our results indicate that energetic demands incurred during migration are similar to those during reproduction and emphasize the energetic challenges of migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-019-04449-2 | DOI Listing |
Clin Dysmorphol
December 2024
Department of Pediatric Genetics.
Introduction: Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMD-JL1) is an extremely rare skeletal dysplasia belonging to a group of disorders called linkeropathies. It is characterized by skeletal and connective tissue abnormalities. Biallelic variants in genes encoding enzymes that synthesize the tetrasaccharide linker region of glycosaminoglycans lead to linkeropathies, which exhibit clinical and phenotypic features that overlap with each other.
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Biological Sciences, University of Illinois at Chicago, Chicago, 60607, IL, USA.
Premise: Primroses famously employ a system that simultaneously expresses distyly and filters out self-pollen. Other species in the Primulaceae family, including Lysimachia monelli (blue pimpernel), also express self-incompatibility (SI), but involving a system with distinct features and an unknown molecular genetic basis.
Methods: We utilize a candidate-based transcriptome sequencing (RNA-seq) approach, relying on candidate T2/S-RNase Class III and S-linked F-box-motif-containing genes and harnessing the unusual evolutionary and genetic features of SI, to examine whether an RNase-based mechanism underlies SI in L.
Paxillin (PXN) and focal adhesion kinase (FAK) are two major components of the focal adhesion complex, a multiprotein structure linking the intracellular cytoskeleton to the cell exterior. PXN interacts directly with the C-terminal targeting domain of FAK (FAT) via its intrinsically disordered N-terminal domain. This interaction is necessary and sufficient for localizing FAK to focal adhesions.
View Article and Find Full Text PDFAnthropogenic planetary heating is disrupting global alpine systems, but our ability to empirically measure and predict responses in alpine species distributions is impaired by a lack of comprehensive data and technical limitations. We conducted a comprehensive, semi-quantitative review of empirical studies on contemporary range shifts in alpine insects driven by climate heating, drawing attention to methodological issues and potential biotic and abiotic factors influencing variation in responses. We highlight case studies showing how range dynamics may affect standing genetic variation and adaptive potential, and discuss how data integration frameworks can improve forecasts.
View Article and Find Full Text PDFNeuroradiol J
January 2025
Department of Neuroradiology, Mayo Clinic, USA.
Despite their similar nomenclature, Neurofibromatosis type 1 (NF1) and "Neurofibromatosis type 2" are discrete and clinically distinguishable entities. The name of "neurofibromatosis type 2" has been changed to NF2-related schwannomatosis, to reflect the fact that neurofibromas do not occur in this syndrome and therefore the name "Neurofibromatosis" is factually incorrect. Furthermore, multiple schwannomas, a hallmark feature of NF2, can also occur in patients with mutations in genes including SMARCB1 and LZTR1, all exhibiting overlapping clinical features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!