To compare the serum micro-RNAs (miRNAs) profile of individuals with type 1 diabetes without microvascular complications vs. those with multiple severe microvascular complications, in order to identify epigenetically modulated pathways in these two groups of individuals. A total of 10 subjects were selected among individuals followed in the Diabetes Outpatient Clinic and sorted according to the absence or presence of all microvascular complications. Samples from these participants were used for evaluation of serum miRNA expression profile employing a qRT-PCR assay with hydrolysis probes based on the Taqman Low Density Arrays (TLDA) system. The top six most differentially expressed miRNAs between the aforementioned groups were validated by qRT-PCR in additional 47 type 1 diabetes individuals sorted according to the absence or presence of all microvascular complications and matched for age, sex, degree of metabolic control, diabetes duration, and age at diagnosis. Twenty one out of three hundred and seventy seven miRNAs were upregulated in the group of individuals with all microvascular complications vs. the group without complications. The following miRs were validated: 518-3p, 34a-5p, 126-5p, 425-5p, 618, and 139-5p and logistic regression analyses showed that miRNA-518-3p and miRNA-618 were positively associated with multiple microvascular complications after adjustment for age, sex, diabetes duration, HbAc and use of statin, angiotensin-converting enzyme inhibitors and amlodipine. In this cohort of type 1 diabetes individuals, serum miR-518d-3p and miR-618 were upregulated in those with diabetes kidney disease, diabetes retinopathy, peripheral neuropathy, and cardiovascular autonomic neuropathy in comparison to individuals with no microvascular complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582662PMC
http://dx.doi.org/10.3389/fendo.2019.00385DOI Listing

Publication Analysis

Top Keywords

microvascular complications
32
type diabetes
16
diabetes
9
complications
9
individuals
8
individuals type
8
microvascular
8
multiple microvascular
8
sorted absence
8
absence presence
8

Similar Publications

Association between sensitivity to thyroid hormone indices and type 2 diabetic microvascular complications in euthyroid patients.

Sci Rep

December 2024

Department of Endocrine and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

The correlation between thyroid hormone (TH) sensitivity and microvascular complications of type 2 diabetes mellitus (T2DM) remains uncertain. This study aimed to explore the association between TH sensitivity and the risk of diabetic kidney disease (DKD), diabetic retinopathy (DR), and diabetic neuropathy (DNP) in euthyroid T2DM patients. This study included a total of 946 hospitalized T2DM patients and calculated their sensitivity to the TH index, and each patient completed screenings for DKD, DR, and DNP.

View Article and Find Full Text PDF

In physiological conditions, red blood cells (RBCs) demonstrate remarkable deformability, allowing them to undergo considerable deformation when passing through the microcirculation. However, this deformability is compromised in Type 1 diabetes mellitus (T1DM) and related pathological conditions. This study aims to investigate the biomechanical properties of RBCs in T1DM patients, focusing on identifying significant mechanical alterations associated with microvascular complications (MCs).

View Article and Find Full Text PDF

Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.

View Article and Find Full Text PDF

Coronary heart disease and type 2 diabetes mellitus (T2DM) often co-occur, presenting substantial health risks, particularly following acute myocardial infarction (AMI). While percutaneous coronary intervention (PCI) is a prevalent treatment, complications such as microvascular dysfunction may lead to heart failure, necessitating additional therapies. This editorial examines the emerging roles of sacubitril/valsartan and sodium-glucose co-transporter 2 inhibitors in managing post-PCI.

View Article and Find Full Text PDF

Insight into dysregulated VEGF-related genes in diabetic retinopathy through bioinformatic analyses.

Naunyn Schmiedebergs Arch Pharmacol

December 2024

Ningxia Hui Autonomous Region People's Hospital, Ningxia Eye Hospital, No. 301 Zhengyuan North Street, Jinfeng District, Yinchuan City, 750004, Ningxia Hui Autonomous, China.

Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes mellitus. VEGF plays a pivotal role in the pathogenesis of DR. To characterize the VEGF-related genes in DR patients, the RNAseq dataset of DR and normal control were downloaded from the GEO database and analyzed using R package limma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!