In the face of global water scarcity, a successful transition of rice cultivation from puddled to dry direct-seeded rice (DDSR) is a future need. A genome-wide association study was performed on a complex mapping population for 39 traits: 9 seedling-establishment traits, 14 root and nutrient-uptake traits, 5 plant morphological traits, 4 lodging resistance traits, and 7 yield and yield-contributing traits. A total of 10 significant marker-trait associations (MTAs) were found along with 25 QTLs associated with 25 traits. The percent phenotypic variance explained by SNPs ranged from 8% to 84%. Grain yield was found to be significantly and positively correlated with seedling-establishment traits, root morphological traits, nutrient uptake-related traits, and grain yield-contributing traits. The genomic colocation of different root morphological traits, nutrient uptake-related traits, and grain-yield-contributing traits further supports the role of root morphological traits in improving nutrient uptake and grain yield under DDSR. The QTLs/candidate genes underlying the significant MTAs were identified. The identified promising progenies carrying these QTLs may serve as potential donors to be exploited in genomics-assisted breeding programs for improving grain yield and adaptability under DDSR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597570PMC
http://dx.doi.org/10.1038/s41598-019-45770-3DOI Listing

Publication Analysis

Top Keywords

traits
16
morphological traits
16
grain yield
12
root morphological
12
nutrient uptake
8
dry direct-seeded
8
seedling-establishment traits
8
traits root
8
yield-contributing traits
8
traits nutrient
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!