Land degradation is one of the world's most serious environmental issues. Human activities play an important role in it. Therefore, human-induced land degradation monitoring is of crucial scientific significance in revealing the evolution of land degradation and guiding its governance. Based on the residual trend (RESTREND) approach and using Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) 3g and monthly precipitation as data sources, a quantitative evaluation is conducted on the conditions of human-induced land degradation during 1982-2012 in northern China. The results indicate that (1) the "optimal cumulative precipitation-NDVImax" regression model constructed herein can improve the capability of recognizing human-induced land degradation of arid and semiarid areas in the RESTREND approach. Moreover, long time-series NDVI and precipitation data may reduce the uncertainty of quantifying human-induced land degradation. (2) In the past 3 decades, northern China has experienced three stages of human-induced land degradation, i.e., rapid development, overall reversal with local development, and continuous reversion. Human-induced land degradation in the agro-pastoral ecotone of northern China has shown a rapid restoration trend since the 1990s. (3) It is believed that the dominant factor of land degradation has a significant spatial-temporal scale effect and spatial heterogeneity. Therefore, concrete issues should be specifically analyzed to improve our understanding of land degradation development and reversal, the spatial-temporal pattern and the driving forces of land degradation in the past 3 decades in northern China. Climate change may be the main driving force of land degradation. However, the influence of human activities on the development and reversal of land degradation in small areas and in a short time is more remarkable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651126 | PMC |
http://dx.doi.org/10.3390/ijerph16132258 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!