The aim of the present research work is to enhance the thermal and dynamic mechanical properties of Kevlar/ sheath (CS)/epoxy composites with graphene nano platelets (GNP). Laminates were fabricated through the hand lay-up method followed by hot pressing. GNP at different wt.% (0.25, 0.5, and 0.75) were incorporated with epoxy resin through ultra-sonication. Kevlar/CS composites with different weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) were fabricated while maintaining a fiber/matrix weight ratio at 45/55. Thermal degradation and viscoelastic properties were evaluated using thermogravimetric analysys (TGA), differential scanning calorimetric (DSC) analysis, and a dynamic mechanical analyser (DMA). The obtained results revealed that Kevlar/CS (25/75) hybrid composites at 0.75 wt.% of GNP exhibited similar thermal stability compared to Kevlar/epoxy (100/0) composites at 0 wt.% of GNP. It has been corroborated with DSC observation that GNP act as a thermal barrier. However, DMA results showed that the Kevlar/CS (50/50) hybrid composites at 0.75 wt.% of GNP exhibited almost equal viscoelastic properties compared to Kevlar/epoxy (100/0) composites at 0 wt.% GNP due to effective crosslinking, which improves the stress transfer rate. Hence, this research proved that Kevlar can be efficiently (50%) replaced with CS at an optimal GNP loading for structural applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680950PMC
http://dx.doi.org/10.3390/polym11071085DOI Listing

Publication Analysis

Top Keywords

wt% gnp
16
dynamic mechanical
12
hybrid composites
12
thermal dynamic
8
mechanical properties
8
composites graphene
8
gnp
8
viscoelastic properties
8
composites 075
8
075 wt%
8

Similar Publications

The effect of dispersing multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in the matrix on the low-velocity impact resistance and post-impact residual tensile strength of the carbon fiber reinforced epoxy composite laminates has been experimentally analyzed in this study. The composite specimens with the matrix reinforced by different nanoparticle types and various nanoparticle concentrations (0.1, 0.

View Article and Find Full Text PDF

This study introduces a flexible and scalable charge-trapping intermediate layer of conjugated polymeric film comprising [PANI/PEDOT:PSS] between the [PVA/PDDA] triboelectric layer and graphene-based [PVA/GNP-PSS] electrode using the layer-by-layer (LbL) assembly method. By varying the deposition layers, the optimal coating layout was identified as 2 and 8 bilayers of intermediate and triboelectric layers, respectively. The triboelectric nanogenerator (TENG) fabricated with this optimal configuration achieved peak output voltage and current of 180 V and 9 μA, respectively, at 3 Hz and 5 N against PDMS.

View Article and Find Full Text PDF

High-throughput extraction of cellulose nanofibers from Imperata cylindrica grass for advanced bio composites.

Int J Biol Macromol

January 2025

Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University, Uichang-gu, Changwon 51140, Gyeongsangnam-do, Republic of Korea. Electronic address:

Article Synopsis
  • A novel and cost-effective method for extracting cellulose nanofibers (ECNFs) from Imperata cylindrica grass was developed, resulting in high yield and purity.
  • The extracted ECNFs exhibited impressive characteristics, including a uniform diameter, high crystallinity, and small crystal size, confirmed through advanced analytical techniques.
  • ECNFs were shown to significantly improve the mechanical properties of chitosan composite films, while incorporating graphene nanoplatelets further enhanced their thermal stability, flame retardancy, and electromagnetic shielding capabilities.
View Article and Find Full Text PDF

Unveiling the Significance of Graphene Nanoplatelet (GNP) Localization in Tuning the Performance of PP/HDPE Blends.

Materials (Basel)

November 2024

International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV4 7AL, West Midlands, UK.

Article Synopsis
  • HDPE and PP blends filled with graphene nanoplatelets (GNPs) are explored to understand how processing parameters like blending sequence and screw speed affect their performance.
  • *The study finds that the blending sequence significantly influences the crystallization behavior and tensile properties of the blends, particularly showing that GNPs premixed with PP lead to greater increases in crystallization temperature for PP than GNPs premixed with PE.
  • *Results indicate that while tensile moduli are stable under different processing conditions, elongation at break and tensile toughness exhibit significant changes, emphasizing the critical link between processing methods and material performance.
View Article and Find Full Text PDF

This study developed a novel 3D-printable poly(vinylidene fluoride) (PVDF)-based nanocomposite incorporating 6 wt% graphene nanoplatelets (GNPs) with programmable characteristics for resistive heating applications. The results highlighted the significant effect of a controlled printing direction (longitudinal, diagonal, and transverse) on the electrical, thermal, Joule heating, and thermo-resistive properties of the printed structures. The 6 wt% GNP/PVDF nanocomposite exhibited a high electrical conductivity of 112 S·m when printed in a longitudinal direction, which decreased significantly in other directions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!