Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The site preferences within the structures of half-Heusler compounds have been evaluated through a machine-learning approach. A support-vector machine algorithm was applied to develop a model which was trained on 179 experimentally reported structures and 23 descriptors based solely on the chemical composition. The model gave excellent performance, with sensitivity of 93%, selectivity of 96%, and accuracy of 95%. As an illustration of data sanitization, two compounds (GdPtSb, HoPdBi) flagged by the model to have potentially incorrect site assignments were resynthesized and structurally characterized. The predictions of the correct site assignments from the machine-learning model were confirmed by single-crystal and powder X-ray diffraction analysis. These site assignments also corresponded to the lowest total energy configurations as revealed from first-principles calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b00987 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!