Multiplex detection techniques are emerging within the fields of life science research and medical diagnostics where it is mandatory to analyze a great number of molecules. The detection techniques need to be highly efficient but often involve complicated and expensive fabrication procedures. Here, we present the immobilization and geometric separation of fluorescence-labeled microbeads for a multiplex detection in k levels. A compound of differently sized target molecules (DNA, proteins) is channeled into the respective detection levels by making use of a hydrogel as a size selective filter. The immobilized microbeads (10-20 μm) are considerably larger than the pores of the hydrogel network and therefore stay fixed at the well bottom and in higher elevations, respectively. Small biomolecules can diffuse through the pores of the network, whereas medium-sized biomolecules pass slower and large molecules will be excluded. Besides filtering, this method discriminates the used microbeads into k levels and thereby introduces a geometric multiplexity. Additionally, the exclusion of large entities enables the simultaneous detection of two target molecules, which exhibit the same affinity interaction. The hydrogel is formed through the combination of two macromonomers. One component is a homobifunctional polyethylene glycol linker, carrying a strained alkyne (PEG-BCN) and the second component is the azide-functionalized dendritic polyglycerol (dPG-N). They react via the bioorthogonal strain-promoted azide alkyne cycloaddition (SPAAC). The hydrogel creates a solution-like environment for the diffusion of the investigated biomolecules all the while providing a stable, bioinert, and surface bound network.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b01586DOI Listing

Publication Analysis

Top Keywords

detection levels
12
multiplex detection
8
detection techniques
8
target molecules
8
detection
6
hydrogel
5
spatial separation
4
microbeads
4
separation microbeads
4
microbeads detection
4

Similar Publications

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.

View Article and Find Full Text PDF

Seroprevalence of specific antibodies to Treponema pallidum in blood donors with DNA confirmation of seropositivity.

Cell Mol Biol (Noisy-le-grand)

January 2025

Swedish Board Member of General Surgery, Kurdistan Higher Council of Medical Specialties, Erbil, Iraq.

The rising global incidence of syphilis underscores the risk of transmission through blood transfusions. Treponema pallidum, the pathogen responsible for syphilis, represents a major public health challenge. Accurate detection is essential for controlling the disease, particularly in asymptomatic blood donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!