Fabrication of GaN truncated nanocone array using a pre-deposited metallic nano-hemispheres template for efficient solar water splitting.

Nanotechnology

School of Electronic Information and Engineering, Hubei University of Science and Technology, Xianning 437005, People's Republic of China. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.

Published: October 2019

The GaN truncated nanocone is an excellent candidate for better photoelectrochemical efficiency than other GaN nanostructures. Here the highly ordered GaN truncated nanocone array was fabricated using a pre-deposited metallic nano-hemispheres template on a wafer scale. The highly ordered profiles of pre-deposited metallic nano-hemispheres template were defined by anodic aluminum oxide (AAO) masks through electron beam evaporation. The formation mechanism for the profiles of nano-hemispheres and GaN truncated nanocones were investigated. The results elucidate that proper selection of AAO parameters enables controllability of desired profiles and depth of Cr nano-hemispheres template, further controllability of desired profiles and depth of the GaN truncated nanocones. The optical and photoelectrochemical characterizations show the substantial improvements in ultraviolet light absorption and photoelectrochemical efficiency with photocurrent density by 300% times with respect to planar counterpart. The presented synthetic strategy will pave the way towards low-cost and mass production of GaN truncated nanocone photoelectrode for efficient photocatalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab2d7eDOI Listing

Publication Analysis

Top Keywords

gan truncated
24
truncated nanocone
16
nano-hemispheres template
16
pre-deposited metallic
12
metallic nano-hemispheres
12
nanocone array
8
photoelectrochemical efficiency
8
highly ordered
8
truncated nanocones
8
controllability desired
8

Similar Publications

Megavoltage computed tomography (MVCT) plays a crucial role in patient positioning and dose reconstruction during tomotherapy. However, due to the limited scan field of view (sFOV), the entire cross-section of certain patients may not be fully covered, resulting in projection data truncation. Truncation artifacts in MVCT can compromise registration accuracy with the planned kilovoltage computed tomography (KVCT) and hinder subsequent MVCT-based adaptive planning.

View Article and Find Full Text PDF

Background: The β-adrenergic augmentation of cardiac contraction, by increasing the conductivity of L-type voltage-gated Ca1.2 channels, is of great physiological and pathophysiological importance. Stimulation of β-adrenergic receptors (βAR) activates protein kinase A (PKA) through separation of regulatory (PKAR) from catalytic (PKAC) subunits.

View Article and Find Full Text PDF

Modification of Glucose Metabolic Pathway to Enhance Polyhydroxyalkanoate Synthesis in .

Curr Issues Mol Biol

November 2024

College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are semi-crystalline elastomers with a low melting point and high elongation at break, allowing for a wide range of applications in domestic, agricultural, industrial, and mainly medical fields. Utilizing low-cost cellulose hydrolyzed sugar as a carbon source and metabolic engineering to enhance synthesis in is a promising strategy for commercializing mcl-PHAs, but little has been attempted to improve the utilization of glucose for synthesizing mcl-PHAs. In this study, a multi-pathway modification was performed to improve the utilization of substrate glucose and the synthesis capacity of PHAs.

View Article and Find Full Text PDF

The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons.

Mol Neurodegener

November 2024

Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada.

Article Synopsis
  • - Variants in the CTSB gene are linked to an increased risk of Parkinson's disease (PD) and affect the activity of cathepsin B, an enzyme involved in breaking down proteins and regulating cellular processes related to autophagy and lysosome function.
  • - CatB can both degrade the harmful alpha-synuclein protein associated with PD and potentially create shorter versions of it that are more prone to aggregation, complicating its role in PD pathology.
  • - Experiments showed that inhibiting catB disrupts autophagy and lysosomal function, leading to an accumulation of toxic protein aggregates, while activating catB enhances the clearance of these aggregates in cell and neuron models.
View Article and Find Full Text PDF

iPSC-induced neurons with the V337M MAPT mutation are selectively vulnerable to caspase-mediated cleavage of tau and apoptotic cell death.

Mol Cell Neurosci

September 2024

Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA; Department of Pathology, University of Sao Paulo Medical School, Brazil. Electronic address:

Background: Tau post-translational modifications (PTMs) result in the gradual build-up of abnormal tau and neuronal degeneration in tauopathies, encompassing variants of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Tau proteolytically cleaved by active caspases, including caspase-6, may be neurotoxic and prone to self-aggregation. Also, our recent findings show that caspase-6 truncated tau represents a frequent and understudied aspect of tau pathology in AD in addition to phospho-tau pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!