A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anticancer activity of polymeric nanoparticles containing linoleic acid-SN38 (LA-SN38) conjugate in a murine model of colorectal cancer. | LitMetric

Anticancer activity of polymeric nanoparticles containing linoleic acid-SN38 (LA-SN38) conjugate in a murine model of colorectal cancer.

Colloids Surf B Biointerfaces

Hangzhou PushKang Biotechnology Co., Ltd., Hangzhou 310030, Zhejiang, PR China. Electronic address:

Published: September 2019

Biodegradable polymeric nanoparticles (NPs) have been used frequently as nanocarriers for anticancer drugs. Linoleic acid conjugated SN38 (LA-SN38)-loaded NPs (EBNPs) were developed using biodegradable poly (ethylene oxide)-poly (butylene oxide) (PEO-PBO) diblock copolymer by titration hydration method without using a toxic organic solvent. The EBNPs had high drug loading efficiency and entrapment efficiency for LA-SN38, at 7.53% and 93.55%, respectively. The polydispersity index (PDI) and average diameter were 0.173 ± 0.019 and 226.1 ± 1.2 nm, respectively. The transmission electron microscope (TEM) image presented that the NPs were homogeneous in size and had spherical structures. In vitro study showed the release behavior of EBNPs was slow and sustained. Furthermore, cytotoxicity and apoptosis assay proved that EBNPs were more effective in growth inhibition of human colon cancer cells. Cell uptake experiments further demonstrated that EBNPs could avoid the phagocytosis by macrophages and promote the uptake by cancer cells. In vivo, EBNPs had prolonged blood circulation time and tumor selectivity in biodistribution. The tumor inhibitory rate of EBNPs was higher compared to SNPs group and CPT-11group (P < 0.01), and the drug did not show significant systemic toxicity at the tested dose. These results indicated that EBNPs are a promising candidate for delivery of LA-SN38 to treat colorectal cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2019.06.020DOI Listing

Publication Analysis

Top Keywords

polymeric nanoparticles
8
cancer cells
8
ebnps
7
anticancer activity
4
activity polymeric
4
nanoparticles linoleic
4
linoleic acid-sn38
4
acid-sn38 la-sn38
4
la-sn38 conjugate
4
conjugate murine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!