Streams draining urban catchments ubiquitously undergo negative physical and ecosystem changes, recognized to be primarily driven by frequent stormwater runoff input. The common management intervention is rehabilitation of channel morphology. Despite engineering design intentions, ecohydraulic benefits of urban channel rehabilitation are largely unknown and likely limited. This investigation uses an ecohydraulic modeling approach to investigate the performance of alternative channel design configurations intended to restore key ecosystem functioning in urban streams. Channel reconfiguration design scenarios, specified to emulate the range of channel topographic complexity often used in rehabilitation are compared against a reference 'natural' scenario using ecologically relevant hydraulic metrics. The results showed that the ecohydraulic conditions were incremental improved with the addition of natural oscillations to an increasing number of individual topographic variables in a degraded channel. Results showed that reconfiguration reduced excessive frequency of bed mobility, loss of habitat and hydraulic diversity particularly as more topographic variables were added. However, the results also showed that none of the design scenarios returned the ecohydraulics to their reference conditions. This indicate that channel-based restoration can offer some potential changes to hydraulic habitat conditions but are unlikely to completely mitigate the effects of hydrologic change. We suggest that while reach-scale channel modification may be beneficial to restore urban stream, addressing altered hydrology is critical to fully recover natural ecosystem processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.06.095DOI Listing

Publication Analysis

Top Keywords

urban stream
8
channel
8
ecohydraulic conditions
8
channel reconfiguration
8
design scenarios
8
topographic variables
8
alternative urban
4
stream channel
4
channel designs
4
designs influence
4

Similar Publications

Influence of sewage effluent discharge on putative pathogen community in drinking water sources: insights from full-length 16S rRNA gene amplicon sequencing.

J Water Health

January 2025

Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan.

The discharge of sewage effluent is a major source of microbial contamination in drinking water sources, necessitating a comprehensive investigation of its impact on pathogenic bacterial communities. This study utilized full-length 16S rRNA gene amplicon sequencing to identify putative pathogenic bacteria and analyze their community structures in drinking water sources subjected to different levels of fecal pollution: urban rivers with low, moderate, and high sewage effluent mixing ratios, and mountain streams with minimal human impact. The sewage effluent itself was also analyzed.

View Article and Find Full Text PDF

Microplastics in Cuban freshwaters: diversity, temporal changes, and effects on extracellular enzymatic activity.

Environ Pollut

January 2025

Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain.

Plastics, as synthetic polymers, are emerging contaminants that can harm organisms and ecosystems. This study investigates the presence of microplastics in sediments of two rivers in western Cuba, assessing their temporal variability, diversity, and characterizing the types of microplastics in these ecosystems. Additionally, the study examines the relationship between microplastic concentrations, the extracellular enzymatic activity of benthic microbial communities, and nutrient levels in sediments.

View Article and Find Full Text PDF

Models estimate up to 3 million metric tons of river plastic waste flowing into the world's ocean every year. All ocean-bound rivers endure tidal impact to some degree, but there is a lack of data on the resulting marine emission effects. To address this gap we analyzed the trajectories of grapefruit-sized floating GPS drifters (n = 63) in the Chao Phraya estuary in Bangkok, Thailand, in the three seasons of 2022-2023.

View Article and Find Full Text PDF

Metabolism-disrupting chemicals (MDCs) have attracted widespread attention due to their contributions to the prevalence of metabolic diseases worldwide. The farnesoid X receptor (FXR) is a typical lipid-sensing nuclear receptor and plays a crucial role in the development of metabolic diseases. However, few studies have examined the FXR activities of environmental samples and the corresponding MDCs.

View Article and Find Full Text PDF

Land use changes profoundly affect hydrological processes and water quality at various scales, necessitating a comprehensive understanding of sustainable water resource management. This paper investigates the implications of land use alterations in the Gap-Cheon watershed, analyzing data from 2012 and 2022 and predicting changes up to 2052 using the Future Land Use Simulation (FLUS) model. The study employs the Hydrological Simulation Program-FORTRAN (HSPF) model to assess water quantity and quality dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!