A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chemically Selective Transport in a Cross-Linked H Phase Lyotropic Liquid Crystal Membrane. | LitMetric

Chemically Selective Transport in a Cross-Linked H Phase Lyotropic Liquid Crystal Membrane.

J Phys Chem B

Department of Chemical and Biological Engineering , University of Colorado Boulder, Boulder , Colorado 80309 , United States.

Published: July 2019

The uniform size and complex chemical topology of the pores formed by self-assembled amphiphilic molecules such as liquid crystals make them promising candidates for selective separations. In this work, we observe the transport of water, sodium ions, and 20 small polar solutes within the pores of a lyotropic liquid crystal (LLC) membrane using atomistic molecular simulations. We find that the transport of a species is dependent not only on molecular size but also on chemical functionality. The membrane's inhomogeneous composition gives rise to radially dependent transport mechanisms with respect to the pore centers. We observe that all solutes perform intermittent hops between lengthy periods of entrapment. Three different trapping mechanisms are responsible for this behavior. First, solutes that drift out of the pore can become entangled among the dense monomer tails. Second, solutes can donate hydrogen bonds to the monomer head groups. Third, solutes can coordinate with sodium counterions. The degree to which a solute is affected by each mechanism is dependent on the chemical functionality of the solute. Using the insights developed in this study, we can begin to think about how to redesign existing LLC membranes to perform solute-specific separations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.9b04472DOI Listing

Publication Analysis

Top Keywords

lyotropic liquid
8
liquid crystal
8
chemical functionality
8
solutes
5
chemically selective
4
transport
4
selective transport
4
transport cross-linked
4
cross-linked phase
4
phase lyotropic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!