Flexible optoelectronics is an emerging research field that has attracted a great deal of interest in recent years due to the special functions and potential applications of these devices in flexible image sensors, optical computing, energy conversion devices, the Internet of Things, and other technologies. Here, we examine the high-performance ultraviolet (UV) photodetectors using AZO/ZnO nanorods/PVK/PEDOT:PSS heterostructures integrated on human hair. Due to the precise interfacial energy-level alignment among all layers and superior mechanical characteristics of human hair, the as-obtained photodetector shows a fast response time, high photoresponsivity, and excellent flexibility. According to integrate 7 heterostructures as 7 display pixels, the flexible UV-image sensor has superior device performance and outstanding flexibility and can produce vivid and accurate images of Arabic numerals from 0 to 9. Different combinations of the two heterostructures can also be used to achieve flexible photon-triggered logic functions, including AND, OR, and NAND gates. Our findings indicate the possibility of using human hair as a fiber-shaped flexible substrate and will allow the use of hair-based hierarchical heterostructures as building blocks to create exciting opportunities for next-generation high-performance, multifunctional, low-cost, and flexible optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b07423 | DOI Listing |
J Dermatolog Treat
December 2024
Department of Dermatology, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
Aim: To present three cases of filler-induced alopecia (FIA) and summarize the current knowledge of its clinical features, mechanisms and treatments.
Methods: In the first two cases, two females developed well-defined triangular patches of hair loss after hyaluronic acid (HA) injections, and received corticosteriod injections with topical 5% minoxidil. The third case described another female who experienced alopecia areata-like hair loss after autologous fat grafting, and received combined therapies including corticosteriod, 5% minoxidil and microneedling.
Adv Sci (Weinh)
January 2025
Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, 44106, USA.
Usher syndrome type 1C (USH1C) is a genetic disorder caused by mutations in the USH1C gene, which encodes harmonin, a key component of the mechanoelectrical transduction complex in auditory and vestibular hair cells. USH1C leads to deafness and vestibular dysfunction in humans. An Ush1c knockout (KO) mouse model displaying these characteristic deficits is generated in our laboratory.
View Article and Find Full Text PDFParasit Vectors
January 2025
Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain.
Background: In recent years, cases of leishmaniosis have been described in animals housed in captivity in zoos in Spain [Bennett's wallaby (Macropus rufogriseus rufogriseus), orangutan (Pongo pygmaeus pygameus), and European otter (Lutra lutra)]. Some of these zoological parks are in endemic areas for both human and animal leishmaniosis, thus it should be very important to include this zoonosis in the differential diagnosis.
Methods: The study was carried out in two zoological parks in Madrid, Madrid Zoo and Faunia, and analyzed seven meerkats.
Introduction: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that affects various body systems, including the skin and facial features. Estrogen promotes lupus in human and mouse models of SLE. In this study, we conducted an in vivo study to investigate the relationship between two estrogen receptors (ERα and ERβ) and platelet-activating factor acetylhydrolase (PAF-AH) on the symptoms of SLE.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.
Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!