Ion Transport Behaviors of Nanofluidic Diode Bichannel Systems in the Independent and Synergistic Cascade Mode.

ACS Appl Mater Interfaces

Key Laboratory of Smart Bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering , Beihang University, Beijing 100191 , P. R. China.

Published: July 2019

The nanofluidic diode device was a significant ionic transistor. Its multiple cascades could realize diversified ion transport behaviors and information processing functions. Different cascade modes of channel units will affect the response current properties of multichannel systems. Inspired by independent and synergistic effects in semiconductor transistors, artificial conical nanoporous bichannel systems were investigated in separation and stacking cascade modes to discuss their different ion transport behaviors. The dynamic resistance fitting method was adopted to discuss the properties of each circuit components in the bichannel system for analyzing the circuit properties in different cascade modes. In the stacking mode, electric field interactions at the heterojunctions between channel units dominated the ionic transport properties, and response current of the bichannel system was influenced by the channel unit cascade sequence. In the separation mode, channel units transport ions independently, and the cascade sequence had little effect on response current properties of the system. These promising results provide a new strategy to design and build a series of artificial composite nanochannels with multifunction and intelligence.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b07598DOI Listing

Publication Analysis

Top Keywords

ion transport
12
transport behaviors
12
cascade modes
12
channel units
12
response current
12
nanofluidic diode
8
bichannel systems
8
independent synergistic
8
current properties
8
bichannel system
8

Similar Publications

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF

Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration.

Molecules

January 2025

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization.

View Article and Find Full Text PDF

In this paper, we present a molecular dynamics study of the structural and dynamical properties of γ-valerolactone (GVL) both as a standalone solvent and in electrolyte formulations for electrochemistry applications. This study involves developing a new parameterization of a polarizable forcefield and applying it to simulate pure GVL and selected salt solutions. The forcefield was validated with experimental bulk data and quantum mechanical calculations, with excellent agreement obtained in both cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!