I see the light! Fluorescent proteins suitable for cell wall/apoplast targeting in leaves.

Plant Direct

CSIRO Agriculture & Food Canberra Australian Capital Territory Australia.

Published: January 2019

Correct subcellular targeting is crucial for protein function. Protein location can be visualized in vivo by fusion to a fluorescent protein (FP). Nevertheless, despite intense engineering efforts, most FPs are dim or completely quenched at low pH (<6). This is particularly problematic for the study of proteins targeted to acidic compartments such as vacuoles (pH ~ 3-6) or plant cell walls (pH ~ 3.5-8.3). Plant cell walls play important roles (e.g. structural/protective role, control of growth/morphogenesis), are diverse in structure and function, and are highly dynamic (e.g. during cell growth, in response to biotic/abiotic stresses). To study and engineer plant cell walls, it is therefore critical to identify robust tools which can be used to locate proteins expressed in the apoplast. Here we used a transient expression assay in leaves to test a range of FPs in vivo and determined which ones retained strong fluorescence in the acidic environment of the apoplast. We selected 10 fluorescent proteins with a range of in vitro properties; two historical FPs and eight FPs with in vitro properties suggesting lower pH sensitivity or improved brightness, some of which had never been tested in plants prior to our study. We targeted each FP to the cytosol or the apoplast and compared the fluorescence in both compartments, before testing the in vivo pH sensitivity of FPs across a pH 8-4 gradient. Our results suggest that mTurquoise2, mNeonGreen, and mCherry are suited to tracking proteins in the apoplast under dynamic pH conditions. These fluorescent proteins may also be useful in other acidic compartments such as vacuoles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508812PMC
http://dx.doi.org/10.1002/pld3.112DOI Listing

Publication Analysis

Top Keywords

light! fluorescent
4
fluorescent proteins
4
proteins suitable
4
suitable cell
4
cell wall/apoplast
4
wall/apoplast targeting
4
targeting leaves
4
leaves correct
4
correct subcellular
4
subcellular targeting
4

Similar Publications

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

The Formation and Features of Massive Vacuole Induced by Nutrient Deficiency in Human Embryonic Kidney Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.

Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.

Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.

View Article and Find Full Text PDF

Acute liver injury (ALI) is a prevalent and potentially lethal condition globally, where pharmacotherapy plays a vital role. However, challenges such as rapid drug excretion and insufficient concentration at hepatic lesions often impede the treatment's effectiveness. We successfully prepared glycyrrhizinate monoammonium cysteine (GMC)-loaded lipid nanoparticles (LNPs) using high-pressure homogenization.

View Article and Find Full Text PDF

: This study aimed to design and evaluate Chol-PEG micelles and Chol-PEG vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer's disease (AD). : The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE).

View Article and Find Full Text PDF

: The functional traits of twigs and leaves are closely related to the ability of plants to cope with heterogeneous environments. The analysis of the characteristics of twigs and leaves and leaf thermal dissipation in riparian plants is of great significance for exploring the light energy allocation and ecological adaptation strategies of plant leaves in heterogeneous habitats. However, there are few studies on the correlation between the twig-leaf characteristics of riparian plants and their heat dissipation in light heterogeneous environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!