A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the genetics of lesion and nodal resistance in pea ( L.) to using genome-wide association studies and RNA-Seq. | LitMetric

The disease white mold caused by the fungus is a significant threat to pea production, and improved resistance to this disease is needed. Nodal resistance in plants is a phenomenon where a fungal infection is prevented from passing through a node, and the infection is limited to an internode region. Nodal resistance has been observed in some pathosystems such as the pea ( L.)- pathosystem. In addition to nodal resistance, different pea lines display different levels of stem lesion size restriction, referred to as lesion resistance. It is unclear whether the genetics of lesion resistance and nodal resistance are identical or different. This study applied genome-wide association studies (GWAS) and RNA-Seq to understand the genetic makeup of these two types of resistance. The time series RNA-Seq experiment consisted of two pea lines (the susceptible 'Lifter' and the partially resistant PI 240515), two treatments (mock inoculated samples and -inoculated samples), and three time points (12, 24, and 48 hr post inoculation). Integrated results from GWAS and RNA-Seq analyses identified different redox-related transcripts for lesion and nodal resistances. A transcript encoding a glutathione S-transferase was the only shared resistance variant for both phenotypes. There were more leucine rich-repeat containing transcripts found for lesion resistance, while different candidate resistance transcripts such as a VQ motif-containing protein and a myo-inositol oxygenase were found for nodal resistance. This study demonstrated the robustness of combining GWAS and RNA-Seq for identifying white mold resistance in pea, and results suggest different genetics underlying lesion and nodal resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508546PMC
http://dx.doi.org/10.1002/pld3.64DOI Listing

Publication Analysis

Top Keywords

nodal resistance
28
resistance
15
lesion nodal
12
resistance pea
12
lesion resistance
12
gwas rna-seq
12
genetics lesion
8
nodal
8
genome-wide association
8
association studies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!