Mineral nutrients exert important limitations on plant growth. Growth is limited by the nutrient source when it is constrained by nutrient availability and uptake, which may simultaneously limit investment in photosynthetic proteins, leading to carbon source limitation. However, growth may also be limited by nutrient utilization in sink tissue. The relative importance of these processes is contested, with crop and vegetation models typically assuming source limitations of carbon and mineral nutrients (especially nitrogen). This study compared the importance of source and sink limitation on growth in a slower-growing wild perennial barley () and a faster-growing domesticated annual barley (), by applying a mineral nutrient treatment and measuring nitrogen uptake, growth, allocation, and carbon partitioning. We found that nitrogen uptake, growth, tillering, shoot allocation, and nitrogen storage were restricted by low nutrient treatments. Multiple lines of evidence suggest that low nutrient levels do not limit growth via carbon acquisition: (a) Carbohydrate storage does not increase at high nutrient levels. (b) Ratio of free amino acids to sucrose increases at high nutrient levels. (c) Shoot allocation increases at high nutrient levels. These data indicate that barley productivity is limited by the capacity for nutrient use in growth. Models must explicitly account for sink processes in order to properly simulate this mineral nutrient limitation of growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508780 | PMC |
http://dx.doi.org/10.1002/pld3.94 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Key Laboratory of Medical Molecular Virology (Ministry of Education / National Health Commission / Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, China.
Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like . The uptake and utilization of sialic acid in depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia.
This review explores biochar's potential as a sustainable and cost-effective solution for remediating organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs) and pesticides, in water. Biochar, a carbon-rich material produced from biomass pyrolysis, has demonstrated adsorption efficiencies exceeding 90% under optimal conditions, depending on the feedstock type, pyrolysis temperature, and functionalization. High surface area (up to 1500 m/g), porosity, and modifiable surface functional groups make biochar effective in adsorbing a wide range of contaminants, including toxic metals, organic pollutants, and nutrients.
View Article and Find Full Text PDFEcol Evol
January 2025
Department of Environmental Systems Science ETH Zürich Switzerland.
Scavenging is a widespread feeding strategy involving a diversity of taxa from different trophic levels, from apex predators to obligate scavengers. Scavenger species play a crucial role in ecosystem functioning by removing carcasses, recycling nutrients and preventing disease spread. Understanding the trophic roles of scavenger species can help identify specialized species with unique roles and species that may be more vulnerable to ecological changes.
View Article and Find Full Text PDFJ Biomech Eng
January 2025
Department of Mechanical Engineering Marshall University, Huntington, WV 25755, USA; Department of Biomedical Engineering Marshall University, Huntington, WV 25755, USA.
Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
July 2024
Department of Endocrinology, First Affiliated Hospital of Baotou Medical College, Baotou Inner Mongolia Autonomous Region 014010, China.
Obesity, as a global health crisis, is increasingly linked to intestinal microecology. Probiotics colonise the body, effectively regulating the balance of intestinal flora, while strengthening the intestinal barrier, activating the immune response, releasing beneficial substances, and maintaining micro-ecological balance. This process not only enhances the defence against pathogens, but also reduces the production of inflammatory factors and lowers the level of chronic inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!