Functional electrical stimulation is a common technique used in the rehabilitation of individuals with a spinal cord injury to produce functional movement of paralysed muscles. However, it is often associated with rapid muscle fatigue which limits its applications. The objective of this study is to investigate the effects on the onset of fatigue of different multi-electrode patterns of stimulation via multiple pairs of electrodes using doublet pulses: Synchronous stimulation is compared to asynchronous stimulation patterns which are activated sequentially (AsynS) or randomly (AsynR), mimicking voluntary muscle activation by targeting different motor units. We investigated these three different approaches by applying stimulation to the gastrocnemius muscle repeatedly for 10 min (300 ms stimulation followed by 700 ms of no-stimulation) with 40 Hz effective frequency for all protocols and doublet pulses with an inter-pulse-interval of 6 ms. Eleven able-bodied volunteers (28 ± 3 years old) participated in this study. Ultrasound videos were recorded during stimulation to allow evaluation of changes in muscle morphology. The main fatigue indicators we focused on were the normalised fatigue index, fatigue time interval and pre-post twitch-tetanus ratio. The results demonstrate that asynchronous stimulation with doublet pulses gives a higher normalised fatigue index (0.80 ± 0.08 and 0.87 ± 0.08) for AsynS and AsynR, respectively, than synchronous stimulation (0.62 ± 0.06). Furthermore, a longer fatigue time interval for AsynS (302.2 ± 230.9 s) and AsynR (384.4 ± 279.0 s) compared to synchronous stimulation (68.0 ± 30.5 s) indicates that fatigue occurs later during asynchronous stimulation; however, this was only found to be statistically significant for one of two methods used to calculate the group mean. Although no significant difference was found in pre-post twitch-tetanus ratio, there was a trend towards these effects. In this study, we proposed an asynchronous stimulation pattern for the application of functional electrical stimulation and investigated its suitability for reducing muscle fatigue compared to previous methods. The results show that asynchronous multi-electrode stimulation patterns with doublet pulses may improve fatigue resistance in functional electrical stimulation applications in some conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6582293 | PMC |
http://dx.doi.org/10.1177/2055668319825808 | DOI Listing |
J Magn Reson
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address:
The two-dimensional (2D) refocused INADEQUATE NMR experiment, which correlates double-quantum (DQ) and single-quantum (SQ) coherences, is widely used to probe the chemical connectivities in solids. Nevertheless, the multiplets along the F dimension reduce the resolution and sensitivity of this experiment. The Composite-Refocusing (CR) technique with two excitation pulses has been proposed to suppress these multiplets in 2D INADEQUATE spectra of liquids.
View Article and Find Full Text PDFJ Neurophysiol
February 2025
Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia.
Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown. In 15 participants (9 F, 6 M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) with conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MG) muscles.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada.
When all four fingers are engaged together during a grip strength contraction, the force produced by an individual finger is less than the force produced when it acts in isolation. The purpose of this study was to evaluate whether the reduced force output of a digit during an all-finger grip contraction is due to a decline in voluntary activation. Fifteen young adults ( = 7 females) completed voluntary contractions of the index finger in isolation and all fingers together in a dynamometer capable of separately recording forces from each finger during voluntary and electrically evoked contractions.
View Article and Find Full Text PDFMagn Reson Chem
December 2024
Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
Measurement of scalar couplings between protons is a very challenging task because of complex multiplet patterns and severe overlapping of these multiplets in congested 1D spectra. Numerous 2D J-resolved sequences now exist that utilize either the Zangger-Sterk or PSYCHE or z-filter elements along with selective refocusing and pure-shift schemes to generate high-resolution phase-sensitive spectra with simple doublets in dimension. Herein, we present a 2D J-resolved sequence that employs a simple element consisting of hard pulses and inter-pulse delays to generate phase-sensitive spectra.
View Article and Find Full Text PDFPhys Rev Lett
August 2024
Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Toruń 87-100, Poland.
The dressed atom approach provides a tool to investigate the dynamics of an atom-laser system by fully retaining the quantum nature of the coherent mode. In its standard derivation, the internal atom-laser evolution is described within the rotating-wave approximation, which determines a doublet structure of the spectrum and the peculiar fluorescence triplet in the steady state. However, the rotating wave approximation may fail to apply to atomic systems subject to femtosecond light pulses, light-matter systems in the strong-coupling regime or sustaining permanent dipole moments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!