Bioactive peptides (BP) are specific protein fragments that are physiologically important for most living organisms. It is proven that in humans they are involved in a wide range of therapeutic activities as antihypertensive, antioxidant, anti-tumoral, anti-proliferative, hypocholesterolemic, and anti-inflammatory. In plants, BP are involved in the defense response, as well as in the cellular signaling and the development regulation. Most of the peptides used as ingredients in health-promoting foods, dietary supplements, pharmaceutical, and cosmeceutical preparations are obtained by chemical synthesis or by partial digestion of animal proteins. This makes them not fully accepted by the consumers because of the risks associated with solvent contamination or the use of animal derived substances. On the other hand, plant and microalgae derived peptides are known to be selective, effective, safe, and well tolerated once consumed, thus they have got a great potential for use in functional foods, drugs, and cosmetic products. In fact, the interest in the plant and microalgae derived BP is rapidly increasing and in this review, we highlight and discuss the current knowledge about their studies and applications in the cosmetic field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581726 | PMC |
http://dx.doi.org/10.3389/fpls.2019.00756 | DOI Listing |
Int J Hyg Environ Health
December 2024
Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil.
Trimethoprim (TMP) and sulfamethoxazole (SMX) are bacteriostatic agents, which are co-administered to patients during infection treatment due to their synergetic effects. Once consumed, TMP and SMX end up in wastewater and are directed to municipal wastewater treatment plants (WWTPs) which fail to remove these contaminants from municipal wastewater. The discharge of WWTP effluents containing antibiotics in the environment is a major concern for public health as it contributes to the spread of antimicrobial resistance.
View Article and Find Full Text PDFNew Phytol
December 2024
Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
Gephyrocapsa huxleyi is a prevalent, bloom-forming phytoplankton species in the oceans. It exhibits a complex haplodiplontic life cycle, featuring a diploid-calcified phase, a haploid phase and a third 'decoupled' phase produced during viral infection. Decoupled cells display a haploid-like phenotype, but are diploid.
View Article and Find Full Text PDF3 Biotech
January 2025
Plant Cell Biotechnology (PCBT) Department, Central Food Technological Research Institute (CFTRI), Mysuru, 570 020 India.
Unlabelled: The present study evaluated the effects of 5-methyltetrahydrofolate (5-MTHF) and aqueous extract on diabetes. An in silico docking study with select bioactive compounds showed strong binding affinities of folates with glucose metabolism-related proteins. In vitro assay showed 5-MTHF's superior inhibitory activity on alpha-amylase compared to folic acid.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245, Bialystok, Poland.
Microplastics (MPs) in aquatic environments constitute an ideal surface for biofilm formation, facilitating or hindering the transport of contaminants. This study aims to provide knowledge on the sorption behavior of high-density polyethylene (μ-HDPE) after algal degradation toward UV filters. Up to now, the oxidation of μ-HDPE using the microalga Acutodesmus obliquus has not been studied.
View Article and Find Full Text PDFBioresour Technol
December 2024
CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China. Electronic address:
Low protein content under heterotrophic conditions limits the industrial production of proteins by microalgae. In this study, Graesiella emersonii WBG-1 efficiently synthesized and accumulated proteins (64.03%) under heterotrophic conditions, distinguishing it from other microalgae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!