AI Article Synopsis

  • Caliciviruses are positive-sense, single-stranded RNA viruses contained in a stable protein capsid and affect various vertebrates.
  • The replication of these viruses is complicated by their RNA-dependent RNA polymerase (RdRp), which is error-prone and can accelerate evolution, but studying it is difficult due to challenges in propagating these viruses in lab settings.
  • Recent research on recombinant proteins has uncovered unique properties of calicivirus RdRps, such as high-temperature RNA copying and potential shared structural elements among different calicivirus RdRps.

Article Abstract

The are viruses with a positive-sense, single-stranded RNA genome that is packaged into an icosahedral, environmentally stable protein capsid. The family contains five genera (, , , and ) that infect vertebrates including amphibians, reptiles, birds, and mammals. The RNA-dependent RNA polymerase (RdRp) replicates the genome of RNA viruses and can speed up evolution due to its error-prone nature. Studying calicivirus RdRps in the context of genuine virus replication is often hampered by a lack of suitable model systems. Enteric caliciviruses and RHDV in particular are notoriously difficult to propagate in cell culture; therefore, molecular studies of replication mechanisms are challenging. Nevertheless, research on recombinant proteins has revealed several unexpected characteristics of calicivirus RdRps. For example, the RdRps of RHDV and related lagoviruses possess the ability to expose a hydrophobic motif, to rearrange Golgi membranes, and to copy RNA at unusually high temperatures. This review is focused on the structural dynamics, biochemical properties, kinetics, and putative interaction partners of these RdRps. In addition, we discuss the possible existence of a conserved but as yet undescribed structural element that is shared amongst the RdRps of all caliciviruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563846PMC
http://dx.doi.org/10.3389/fmicb.2019.01280DOI Listing

Publication Analysis

Top Keywords

rna-dependent rna
8
calicivirus rdrps
8
rna
5
rdrps
5
calicivirus rna-dependent
4
rna polymerases
4
polymerases evolution
4
evolution structure
4
structure protein
4
protein dynamics
4

Similar Publications

Flowering, a pivotal plant lifecycle event, is intricately regulated by environmental and endogenous signals via genetic and epigenetic mechanisms. Photoperiod is a crucial environmental cue that induces flowering by activating integrators through genetic and epigenetic pathways. However, the specific role of DNA methylation, a conserved epigenetic marker, in photoperiodic flowering remains unclear.

View Article and Find Full Text PDF

Background: Qi pi pill (QPP), which contains Renshen, Baizhu, Fuling, Gancao, Chenpi, Shanyao, Lianzi, Shanzha, Liushenqu, Maiya, and Zexie, was recommended for preventing and treating COVID-19 in Shandong Province (China). However, the mechanism by which QPP treats infectious diseases remains unclear. This study aims to investigate the therapeutic effect of QPP in vitro and on acute influenza infection in mice, exploring its mechanism of action against influenza A virus (IAV).

View Article and Find Full Text PDF

Bacterial and viral RNA polymerases are promising targets for the development of new transcription inhibitors. One of the potential blockers of RNA synthesis is 7,8-dihydro-8-oxo-1,-ethenoadenine (oxo-εA), a synthetic compound that combines two adenine modifications: 8-oxoadenine and 1,-ethenoadenine. In this study, we synthesized oxo-εA triphosphate (oxo-εATP) and showed that it could be incorporated by the RNA-dependent RNA polymerase of SARS-CoV-2 into synthesized RNA opposite template residues A and G in the presence of Mn ions.

View Article and Find Full Text PDF

Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.

View Article and Find Full Text PDF

DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!