Association Analysis of Charcoal Rot Disease Resistance in Soybean.

Plant Pathol J

Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.

Published: June 2019

In this research, the relationships among the 31 microsatellite markers with charcoal rot disease resistance related indices in 130 different soybean cultivars and lines were evaluated using association analysis based on the general linear model (GLM) and the mixed linear model (MLM) by the Structure and Tassel software. The results of microsatellite markers showed that the genetic structure of the studied population has three subpopulations (K=3) which the results of bar plat also confirmed it. In association analysis based on GLM and MLM models, 31 and 35 loci showed significant relationships with the evaluated traits, respectively, and confirmed considerable variation of the studied traits. The identified markers related to some of the studied traits were the same which can probably be due to pleiotropic effects or tight linkage among the genomic regions controlling these traits. Some of these relationships were including, the relationship between Sat_252 marker with amount of charcoal rot disease, Satt359, Satt190 and Sat_169 markers with number of microsclerota in stem, amount of charcoal rot disease and severity of charcoal rot disease, Sat_416 marker with number of microsclerota in stem and amount of charcoal rot disease and the Satt460 marker with number of microsclerota in stem and severity of charcoal rot disease. The results of this research and the linked microsatellite markers with the charcoal rot disease-related characteristics can be used to identify the suitable parents and to improve the soybean population in future breeding programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586194PMC
http://dx.doi.org/10.5423/PPJ.OA.12.2018.0283DOI Listing

Publication Analysis

Top Keywords

charcoal rot
32
rot disease
28
association analysis
12
microsatellite markers
12
amount charcoal
12
number microsclerota
12
microsclerota stem
12
charcoal
8
rot
8
disease resistance
8

Similar Publications

: is an important phytopathogenic fungus affecting over 500 plant species worldwide. However, this fungus rarely causes disease in humans. : We reported the first case of endophthalmitis due to , describing microbiological diagnostic approaches.

View Article and Find Full Text PDF

First Report of Charcoal Rot Caused by of Sweet Potato in Southern China.

Plant Dis

January 2025

Guangdong Academy of Agricultural Sciences, Crop Research Institute, Wushan Road, Tianhe District, guangzhou, China, 510640;

Sweet potato ( (L.) Lam) is a major food crop that is cultivated in southern China (Huang et al. 2020).

View Article and Find Full Text PDF

This study explores the potential antagonistic effects of selenium-doped zinc oxide nanoparticles (Se-ZnO NPs), synthesized through a sustainable approach, on maize charcoal rot induced by the fungus Macrophomina phaseolina. Se-ZnO-NPs were prepared using the rhizobium extract of Curcuma longa and characterized for their physicochemical properties. Characterization included various in vitro parameters such as FTIR, ICP-MS, particle size, PDI, and zeta potential.

View Article and Find Full Text PDF

Rhazya stricta, a perennial shrub native to the Middle East and South Asia, has been used in traditional medicine for various therapeutic purposes, including antimicrobial action. The current study aimed to compare the antifungal properties of 96% and 50% ethanolic extracts of R. stricta leaves and their biogenic silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Background: Charcoal Rot (CR) poses a significant threat to mung bean crops by reducing yield, making the development of resistant varieties crucial for stable production and food security. This study evaluated 19 newly identified mung bean landraces using biochemical traits and SSR markers, revealing genetic variability, CR disease reactions, and traits influencing yield and resistance, which provide valuable insights for breeding CR-resistant, high-yielding varieties.

Methods And Results: Mung bean landraces were evaluated for their response to CR using 4 biochemical parameters, and 10 SSR markers to assess genetic variability and disease resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!