The emerging field of lead halide perovskite-sensitized triplet-triplet annihilation (TTA) in rubrene shows great promise in upconversion applications. By rapidly transferring single charge carriers instead of bound triplet states, perovskites enable a high triplet population in rubrene, yielding low I values. In this contribution, we investigate the role of the triplet population on the upconverted emission. Interestingly, two independent rates of TTA can be observed, as well as a sharp drop in the visible emission intensity over several seconds. This effect can be attributed to the triplet-density-based diffusion length: (i) at low triplet populations slow diffusion-mediated TTA yields singlets far from the interface and (ii) higher triplet populations lead to rapid TTA close to the perovskite/rubrene interface. Because of the proximity of the strongly absorbing perovskite, the singlet states created closer to the interface undergo stronger back-transfer to the perovskite film and therefore appear to exhibit a lower photoluminescence quantum yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b01526 | DOI Listing |
Chem Commun (Camb)
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Photodetectors based on lead halide perovskites often show excellent performance but poor stability. Herein, we demonstrate a photodetector based on MAPbBr single crystals passivated with an ultrathin layer of PbSO, which shows superior detectivity and on/off ratios compared to the control device due to the combined effect of lower surface traps, reduced recombination and low dark current. In addition, the device retained ∼56% of its initial * with an impressive on/off ratio of ∼801 after one year compared to ∼22% of * and an on/off ratio of ∼6 of the control device.
View Article and Find Full Text PDFACS Nano
January 2025
College of Materials and Chemistry & Chemical Engineering, Nuclear Technology Key Laboratory of Earth Science, Chengdu University of Technology, Chengdu 610059, China.
The precise patterning of elastic semiconductors holds encouraging prospects for unlocking functionalities and broadening the scope of optoelectronic applications. Here, perovskite films with notable elasticity capable of stretching over 250% are successfully fabricated by using a continuous-wave (CW) laser-patterning technique. Under CW laser irradiation, perovskite nanoparticles (NPs) undergo meticulous crystallization within the thermoplastic polyurethane (TPU) matrix, which yields the capability of an unparalleled stretch behavior.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
From synthesis to application, there are always certain interactions between the polar solvents and perovskite nanocrystals (NCs). To explain the effect of solvent polarity especially on the photoluminescence (PL) properties of NCs is highly desirable, especially for sensing applications. Herein We have synthesized the methylammonium lead mixed halides (MAPbClBr, where n = 0, 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.
Understanding the oxygen evolution reaction (OER) mechanism is pivotal for improving the overall efficiency of water electrolysis. Despite methylammonium lead halide perovskites (MAPbX) have shown promising OER performance due to their soft-lattice nature that allows lattice-oxygen oxidation of active α-PbO layer surface, the role of A-site MA or X-site elements in the electrochemical reconstruction and OER mechanisms has yet to be explored. Here, it is demonstrated that the OER mechanism of perovskite@zeolite composites is intrinsically dominated by the A-site group of lead-halide perovskites, while the type of X-site halogen is crucial for the reconstruction kinetics of the composites.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine.
The title compound is a germanium-based hybrid metal halide that represents a less-toxic alternative to more popular lead-based analogues in optoelectronic applications. {(2-ICHNH)[GeI]} is composed of infinite inorganic layers that are formed by [GeI] octa-hedra connected in a corner-sharing manner with four equatorial I atoms. The organic (2-ICHNH) cations inter-leave the inorganic layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!