Proteins adsorbed onto biomaterial surfaces facilitate cell-material interactions, including adhesion and migration. Of particular importance are provisional matrix components, fibrinogen (Fg) and fibronectin (Fn), which play an important role in the wound-healing process. Here, to assess the potential of a series of elastomeric poly(butylene succinate) (PBS) copolymers for soft tissue engineering and regenerative medicine applications, we examined the adsorption of Fg and Fn. We prepared spin-coated thin films of the poly(butylene succinate) homopolymer and a series of elastomeric poly(butylene succinate) copolymers with butylene succinate (PBS, hard segment) to succinate-dimer linoleic diol unit (dilinoleic succinate (DLS), soft segments) weight ratios of 70:30, 60:40, and 50:50. X-ray diffraction was used to assess crystallinity, whereas the obtained thin films were characterized using a quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy. Protein adsorption was assessed using QCM-D, followed by data analysis using viscoelastic modeling. On all three copolymers, we observed robust adsorption of both key provisional matrix proteins. Importantly, for both proteins, viscoelastic modeling determined that the adlayers were 30-40 nm thick and had low shear modulus values (<25 kPa), thus indicating soft orientations (end-on for Fg) or conformations (open for Fn) of the hydrated proteins. Overall, our results are very encouraging, as they predict excellent cell adhesion and migration, key features enabling tissue integration of potential PBS-DLS scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b01119 | DOI Listing |
J Biomed Mater Res B Appl Biomater
January 2025
Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland.
Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques.
View Article and Find Full Text PDFEnviron Manage
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants.
View Article and Find Full Text PDFSci Total Environ
December 2024
MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China. Electronic address:
Mar Pollut Bull
December 2024
Ifremer RDT, Research and Technology Development Unit, Plouzané 29280, France.
In order to reduce the contamination of marine ecosystems by plastic materials, the scientific community is engaged in the development of biodegradable substitutes for conventional plastics. While certain candidates have been successfully tested in coastal marine environments, the degradation process in deep-sea environments remains poorly understood. This study examined the degradation of two industrial biopolyesters, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a polybutylene-succinate (PBS), in two deep marine environments of the Middle and Eastern Atlantic, at depths of 780 and 1740 m, as well as under laboratory conditions under hydrostatic pressure and without micro-organisms.
View Article and Find Full Text PDFACS Omega
November 2024
Centre for Enzyme Innovation, University of Portsmouth, St Michael's Building, Portsmouth PO1 2DT, U.K.
The discovery of novel plastic degrading enzymes commonly relies on comparing features of the primary sequence to those of known plastic degrading enzymes. However, this approach cannot always guarantee success. This is exemplified by the different degradation rates of the two polymers poly(ethylene terephthalate) (PET) and polybutylene succinate (PBS) by two hydrolases: PETase from and Cut from .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!