The insertion of CO into a metal hydride bond to form a metal formate is a key elementary step in many catalytic cycles for CO conversion. Similarly, the microscopic reverse reaction, the decarboxylation of a metal formate to form a metal hydride and CO, is important in both organic synthesis and strategies for hydrogen storage using organic liquids. There are however few experimental studies probing the mechanism of these reactions and identifying the effects of specific variables such as Lewis acid (LA) additives or solvent, which have been shown to significantly impact catalytic performance. In this study, we use a rapid mixing stopped-flow instrument to study the kinetics of CO insertion into the cationic ruthenium hydride [Ru(tpy)bpy)H]PF (tpy = 2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine) in various solvents, both in the presence and in the absence of a LA. We show that LAs can increase the observed rate of this reaction and determine the first quantitative trends for the rate enhancement observed for CO insertion in the presence of cationic LAs, Li ≫ Na > K > Rb. Furthermore, we show that the rate enhancement observed with LAs is solvent dependent. Specifically, as the acceptor number (AN) of the solvent increases, the effect of the LA becomes smaller. Last, we demonstrate that there is a significant solvent effect on CO insertion in the absence of a LA. Although the AN of the solvent has been previously used to predict the rate of CO insertion, this work shows that the best model for the rate of insertion is based on the Dimroth-Reichardt E(30) value of the solvent, a parameter that better accounts for specific solute/solvent interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b05192 | DOI Listing |
J Am Chem Soc
January 2025
Institut für Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195 Berlin, Germany.
Herein, we report the solvent-dependent reactivity of Fe(CO) toward AsF in either anhydrous HF or liquid SO. The reaction of Fe(CO) with the superacid HF/AsF leads to the protonation of the iron center and allows for the first-time structural characterization of [FeH(CO)] in the solid state, representing one of the most acidic transition metal hydride complexes to ever be isolated and structurally characterized. In the aprotic but oxidation-stable solvent SO, Fe(CO) is oxidized and dimerized to [Fe(CO)], which is isoelectronic with well-known Mn(CO).
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Hydrogen Technology, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
Coherent phase transformations in interstitial solid solutions or intercalation compounds with a miscibility gap are of practical relevance for energy storage materials and specifically for metal hydride or lithium-ion compound nanoparticles. Different conclusions on the size-dependence of the transformation conditions are reached by modeling or theory focusing on the impact of either one (internal, solid-state-) critical-point wetting of the nanoparticle surface or coherency constraints from solute-saturated surface layers. We report a hybrid numerical approach, combining atomistic grand canonical Monte Carlo simulation with a continuum mechanics analysis of coherency stress and modeling simultaneously wetting and mechanical constraints.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, IIT Gandhinagar, Palaj, Gujarat, 382355, India.
The second 3d-transition metal incorporation in Ni-(oxy)hydroxide has a drastic effect on alkaline OER and alcohol dehydrogenation reactivity. While Mn incorporation suppresses the alkaline OER, it greatly improves the alcohol dehydrogenation reactivity. A complete reversal of reactivity is obtained when Fe is incorporated, which shows better performance for alkaline OER with poor alcohol dehydrogenation reactivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Western University, Chemistry, 1151 Richmond Street, N6A3K7, London, CANADA.
This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO2) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = C5Me5-) - a well-studied family of organometallic complex - as models. More precisely, we describe the general reactivity of [(Cp*-BR2)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO2. Control experiments underscore the critical nature of borane incorporation for CO2 to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H]).
View Article and Find Full Text PDFSci Adv
January 2025
College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
Hydrides in metal complexes or nanoclusters are typically viewed as electron-withdrawing. Several recent reports have demonstrated the emergence of "electron-donating" hydrides in tailoring the structure, electronic structure, and reactivity of metal nanoclusters. However, the number of such hydrides included in each cluster kernel is limited to one or two.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!