Nitrile imines are important intermediates in 1,3-dipolar cycloaddition reactions, and they are also known to undergo efficient, unimolecular rearrangements to carbodiimides via 1 H-diazirines and imidoylnitrenes under both thermal and photochemical reaction conditions. We now report a competing rearrangement, revealed by CASPT2(14,12) and B3LYP calculations, in which C-phenylnitrile imines 8 undergo ring expansion to 1-diazenyl-1,2,4,6-cycloheptatetraenes 12 akin to the phenylcarbene-cycloheptatetraene rearrangement. Amino-, hydroxy-, and thiol-groups in the meta positions of C-phenylnitrile imine lower the activation energies for this rearrangement so that it becomes potentially competitive with the cyclization to 1 H-diazirines and hence rearrange to carbodiimides. The diazenylcycloheptatetraenes 12 thus formed can evolve further to cycloheptatetraene 30 and 2-diazenyl-phenylcarbene 16 over modest activation barriers, and the latter carbenes cyclize very easily to 2 H- and 3 H-indazoles, from which 6-methylenecyclohexadienylidene, phenylcarbene, fulvenallene, and their isomers are potentially obtainable. Moreover, another new rearrangement of benzonitrile imine forms 3-phenyl-3 H-diazirine, which is a precursor of phenyldiazomethane and hence phenylcarbene. This reaction is competitive with the ring expansion. The new rearrangements predicted here should be experimentally observable, for example, under matrix photolysis or flash vacuum pyrolysis conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.9b01183DOI Listing

Publication Analysis

Top Keywords

ring expansion
12
nitrile imines
8
rearrangements nitrile
4
imines
4
ring
4
imines ring
4
expansion benzonitrile
4
benzonitrile imines
4
imines cycloheptatetraenes
4
cycloheptatetraenes ring
4

Similar Publications

What Factors Determine the Brevione B Desaturation Mechanism in the Nonheme Iron Dioxygenase BrvJ?

Chemistry

January 2025

The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The natural product synthesis of brevione J undergoes a cascade of reactions including an oxidative desaturation and a ring-expansion. The C1-C2 desaturation of brevione B is catalyzed by the nonheme iron dioxygenase BrvJ using one molecule of O2 and a-ketoglutarate (aKG). However, whether the subsequent oxidative ring expansion reaction is also catalyzed by the same enzyme is unknown and remains controversial.

View Article and Find Full Text PDF

A novel approach for the synthesis of pyrone and indanone derivatives utilizing Fe(III)-catalyzed reductive radical ring expansion of olefins and cyclopropenone has been proposed. The preliminary mechanism study shows that the alkyl radical is formed by hydrogen atom transfer, which can open the tension ring and then generate the intermediate. There are two paths for the intermediate: when there is a hydroxyl group at the β-position of the olefin, the reaction produces pyrones, and otherwise 1-indanone is generated.

View Article and Find Full Text PDF

Systematic Analysis of Cotton RING E3 Ubiquitin Ligase Genes Reveals Their Potential Involvement in Salt Stress Tolerance.

Int J Mol Sci

January 2025

Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China.

The Really Interesting New Gene (RING) E3 ubiquitin ligases represent the largest class of E3 ubiquitin ligases involved in protein degradation and play a pivotal role in plant growth, development, and environmental responses. Despite extensive studies in numerous plant species, the functions of RING E3 ligases in cotton remain largely unknown. In this study, we performed systematic identification, characterization, and expression analysis of genes in cotton.

View Article and Find Full Text PDF

Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states.

View Article and Find Full Text PDF

Gas-phase conformational landscape and ring-puckered structure of 1-aminoindane.

Chemphyschem

January 2025

Universidad de Valladolid Facultad de Ciencias, Química Física y Química Inorgánica, SPAIN.

Indane-based molecules are effective scaffolds for different pharmaceutical products, so it is relevant to analyze the relation between structure and functionality in indane derivatives. Here, we have characterized the conformational landscape and molecular structure of 1-aminoindane in the gas phase using chirped-excitation Fourier-transform microwave spectroscopy and computational methods. The rotational spectrum confirmed the presence of two conformers, which were identified based on their rotational constants and 14N nuclear quadrupole coupling tensor elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!