A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Methane Diffusion in a Flexible Kerogen Matrix. | LitMetric

Methane Diffusion in a Flexible Kerogen Matrix.

J Phys Chem B

MultiScale Materials Science for Energy and Environment (MSE2), The Joint CNRS/MIT/Aix-Marseille University Laboratory, UMI CNRS 3466, Massachusetts Institute of Technology, Cambridge 02139 , Massachusetts , United States.

Published: July 2019

It has been recognized that the microporosity of shale organic matter, especially that of kerogen, strongly affects the hydrocarbon recovery process from unconventional reservoirs. So far, the numerical studies on hydrocarbon transport through the microporous phase of kerogen have neglected the effect of poromechanics, that is, the adsorption-induced deformations, by considering kerogen as a frozen, nondeformable, matrix. Here, we use molecular dynamics simulations to investigate methane diffusion in an immature (i.e., with high H/C ratio) kerogen matrix, while explicitly accounting for adsorption-induced swelling and internal matricial motions, covering both phonons and nonperiodic internal deformations. However, in the usual frozen matrix approximation, diffusivity decreases with increasing fluid loading, as evidenced by a loss of free volume, accounting for adsorption-induced swelling that gives rise to an increase in free volume and, hence, in diffusivity. The obtained trend is further rationalized using a Fujita-Kishimoto free volume theory initially developed in the context of diffusion in swelling polymers. We also quantify the enhancing effect of the matrix internal motions (i.e., at fixed volume) and show that it roughly gives an order of magnitude increase in diffusivity with respect to a frozen matrix, thanks to fluctuations in the pore connectivity. We eventually discuss the possible implications of this work to explain the productivity slowdown of hydrocarbon recovery from shale immature reservoirs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.9b03266DOI Listing

Publication Analysis

Top Keywords

free volume
12
methane diffusion
8
kerogen matrix
8
hydrocarbon recovery
8
accounting adsorption-induced
8
adsorption-induced swelling
8
frozen matrix
8
matrix
6
kerogen
5
diffusion flexible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!