Concerns regarding ambient temperature operation, dissolved methane recovery, and nutrient removal have limited the implementation of anaerobic membrane bioreactors (AnMBRs) for domestic wastewater treatment. This study addresses these challenges using a pilot-scale gas-sparged AnMBR, with post-treatment recovery of dissolved methane and nutrients. Operating under ambient temperatures for 472 days, the AnMBR achieved an average effluent quality of 58 ± 27 mg/L COD and 25 ± 12 mg/L BOD at temperatures ranging from 12.7 to 31.5 °C. The average total methane yield was 0.14 ± 0.06 L-CH/g-COD fed, with 42% of the total methane dissolved in the permeate. Dissolved methane removal using a hollow fiber membrane contactor achieved an average removal efficiency of 70 ± 5%, producing effluent dissolved methane concentrations of 3.8 ± 0.94 mg/L. The methane recovered from gaseous and dissolved fractions could generate an estimated 72.8% of the power required for energy neutrality. Nutrient recovery was accomplished using coagulation, flocculation, and sedimentation for removal of sulfide and phosphorus, followed by a clinoptilolite ion-exchange column for removal of ammonia, producing effluent concentrations of 0.7 ± 1.7 mg-S/L, 0.43 ± 0.29 mg-P/L and 0.05 ± 0.05 mg-N/L. The successful integration of AnMBRs in a treatment train that addresses the critical challenges of dissolved methane and nutrients demonstrates the viability of the technology in achieving holistic wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b06198 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!