Ultrahigh-Performance Optoelectronics Demonstrated in Ultrathin Perovskite-Based Vertical Semiconductor Heterostructures.

ACS Nano

Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering , Hunan University, Changsha , Hunan 410082 , PR China.

Published: July 2019

Two-dimensional (2D) atomic layered semiconductor (, transition metal dichalcogenides, TMDCs) heterostructures display diverse novel interfacial carrier properties and have potential applications in constructing next generation highly compact electronics and optoelectronics devices. However, the optoelectronic performance of this kind of semiconductor heterostructures has difficulty reaching the expectations of practical applications, due to the intrinsic weak optical absorption of the atomic-thick component layers. Here, combining the extraordinary optoelectronic properties of quantum-confined organic-inorganic hybrid perovskite (PVK), we design an ultrathin PVK/TMDC vertical semiconductor heterostructure configuration and realize the controlled vapor-phase growth of highly crystalline few-nanometer-thick PVK layers on TMDCs monolayers. The achieved ultrathin PVKs show strong thickness-induced quantum confinement effect, and simultaneously form band alignment-engineered heterointerfaces with the underlying TMDCs, resulting in highly efficient interfacial charge separation and transport. Electrical devices constructed with the as-grown ultrathin PVK/WS heterostructures show ambipolar transport originating from -type PVK and -type WS, and exhibit outstanding optoelectronic characteristics, with the optimized response time and photoresponsivity reaching 64 μs and 11174.2 A/W, respectively, both of which are 4 orders of magnitude better than the heterostructures with a thick PVK layer, and also represent the best among all previously reported 2D layered semiconductor heterostructures. This work provides opportunities for 2D vertical semiconductor heterostructures incorporating ultrathin PVK layers in high-performance integrated optoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b02676DOI Listing

Publication Analysis

Top Keywords

semiconductor heterostructures
16
vertical semiconductor
12
layered semiconductor
8
pvk layers
8
heterostructures
7
semiconductor
6
ultrathin
5
pvk
5
ultrahigh-performance optoelectronics
4
optoelectronics demonstrated
4

Similar Publications

Efficient separation of photogenerated charge carriers is essential for maximizing the photocatalytic efficiency of semiconductor materials in oxygen evolution reactions (OER). This study presents a novel trimetallic photocatalyst, MIL-100(Fe)/TiO/CoO, synthesized through a facile microwave-assisted hydrothermal method followed by atomic layer deposition (ALD). The porous MIL-100(Fe) serves as a support for the sequential deposition of TiO and CoO layers ALD, which enhances electron-hole pair separation and minimizes their recombination.

View Article and Find Full Text PDF

Thick metamorphic buffers are considered indispensable for III-V semiconductor heteroepitaxy on large lattice and thermal-expansion mismatched silicon substrates. However, III-nitride buffers in conventional GaN-on-Si high electron mobility transistors (HEMT) impose a substantial thermal resistance, deteriorating device efficiency and lifetime by throttling heat extraction. To circumvent this, a systematic methodology for the direct growth of GaN after the AlN nucleation layer on six-inch silicon substrates is demonstrated using metal-organic vapor phase epitaxy (MOVPE).

View Article and Find Full Text PDF

We demonstrate low energy, forming and compliance-free operation of a resistive memory obtained by the partial oxidation of a two-dimensional layered van-der-Waals semiconductor: hafnium disulfide (HfS). Semiconductor-oxide heterostructures are achieved by low temperature (<300 °C) thermal oxidation of HfS under dry conditions, carefully controlling process parameters. The resulting HfOS/HfS heterostructures are integrated between metal contacts, forming vertical crossbar devices.

View Article and Find Full Text PDF

Triangular-shaped Cu-Zn-In-Se-based nanocrystals with narrow near infrared photoluminescence.

Nanoscale

January 2025

Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.

Tunable optical properties exhibited by semiconductor nanocrystals (NCs) in the near infrared (NIR) spectral region are of particular interest in various applications, such as telecommunications, bioimaging, photodetection, photovoltaics, . While lead and mercury chalcogenide NCs do exhibit exemplary optical properties in the NIR, Cu-In-Se (CISe)-based NCs are a suitable environment-friendly alternative to these toxic materials. Several reports of NIR-emitting (quasi)spherical CISe NCs have been published, but their more complex-shaped counterparts remain rather less explored.

View Article and Find Full Text PDF

Rational design of heterostructure (HS)-based surface acoustic wave (SAW) smart gas sensors for efficient and accurate subppm level ammonia (NH) detection at room temperature (RT) is of great significance in environmental protection and human safety. This study introduced a novel HS composed of an AlN-based SAW resonator and CuO nanoparticles (NPs) as a chemical interface for NH detection at RT (∼26 °C). The structural, morphological, and chemical compositions were detailly investigated, which demonstrates that the CuO/AlN HS was successfully formed via interfacial modulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!