Coordination of light, circadian clock with temperature: The potential mechanisms regulating chilling tolerance in rice.

J Integr Plant Biol

Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China.

Published: June 2020

Rice (Oryza sativa L.) is a major staple food crop for over half of the world's population. As a crop species originated from the subtropics, rice production is hampered by chilling stress. The genetic mechanisms of rice responses to chilling stress have attracted much attention, focusing on chilling-related gene mining and functional analyses. Plants have evolved sophisticated regulatory systems to respond to chilling stress in coordination with light signaling pathway and internal circadian clock. However, in rice, information about light-signaling pathways and circadian clock regulation and their roles in chilling tolerance remains elusive. Further investigation into the regulatory network of chilling tolerance in rice is needed, as knowledge of the interaction between temperature, light, and circadian clock dynamics is limited. Here, based on phenotypic analysis of transgenic and mutant rice lines, we delineate the relevant genes with important regulatory roles in chilling tolerance. In addition, we discuss the potential coordination mechanism among temperature, light, and circadian clock in regulating chilling response and tolerance of rice, and provide perspectives for the ongoing chilling signaling network research in rice.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jipb.12852DOI Listing

Publication Analysis

Top Keywords

circadian clock
20
chilling tolerance
16
light circadian
12
tolerance rice
12
chilling stress
12
chilling
9
rice
9
coordination light
8
regulating chilling
8
roles chilling
8

Similar Publications

Circadian entrainment and external cues can cause gene transcript abundance to oscillate throughout the day, and these patterns of diel transcript oscillation vary across genes and plant species. Less is known about within-species allelic variation for diel patterns of transcript oscillation, or about how regulatory sequence variation influences diel transcription patterns. In this study, we evaluated diel transcript abundance for 24 diverse maize inbred lines.

View Article and Find Full Text PDF

The circadian cycle is a fundamental biological rhythm that governs many physiological functions across nearly all living organisms. In the gastrointestinal tract, activities such as gut motility, hormone synthesis, and communication between the gut, central nervous system and microbiome all fluctuate in alignment with the circadian cycle. The enteric nervous system (ENS) is critical for co-ordinating many of these activities, however, how its activity is governed by the circadian cycle remains unknown.

View Article and Find Full Text PDF

While Drosophila melanogaster serves as a crucial model for investigating both the circadian clock and gut microbiome, our understanding of their relationship in this organism is still limited. Recent analyses suggested that the Drosophila gut microbiome modulates the host circadian transcriptome to minimize rapid oscillations in response to changing environments. Here, we examined the composition and abundance of the gut microbiota in wild-type and arrhythmic per flies, under 12 h:12 h light: dark (12:12 LD) and constant darkness (DD) conditions.

View Article and Find Full Text PDF

The transcription factor brain and muscle Arnt-like protein-1 (BMAL1) is a clock protein involved in various diseases, including atherosclerosis and cancer. However, BMAL1's involvement in kidney fibrosis and the underlying mechanisms remain largely unknown, a gap addressed in this study. Analysis through Masson's trichrome and Sirius red staining revealed that all groups exposed to unilateral ureteral obstruction showed increased BMAL1 protein expression accompanied by increased TGF-β1 expression and elevated key fibrosis markers, including α-SMA, compared with sham groups.

View Article and Find Full Text PDF

Purpose Fibromyalgia syndrome (FMS) presents a chronic pain condition affecting muscles and joints. Investigating circadian rhythms' disruption, integral to physiological responses, this study delves into the potential impact of  gene polymorphism (rs57875989) on FMS pathogenesis. Methods In this study, we investigated gene polymorphism in 100 FMS patients and an equal number of control individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!