EGFR tyrosine-kinase inhibitors (TKIs) are used as targeted therapeutics for the treatment of advanced non-small cell lung cancer (NSCLC) with EGFR-activating mutations. EGFR C797S is common causes of acquired resistance to third-generation TKIs. There is wide-spread opinion that resistance-conferring mutation present even in a small proportion of cancer cells before the start of therapy could potentially predict poor response to a targeted drug. In our study, we tested whether C797S can be found in previously untreated NSCLCs. We analyzed DNA samples extracted from formalin-fixed paraffin-embedded (FFPE) tumor tissue sections of 470 lung adenocarcinoma patients, including 235 samples with activating EGFR mutations. Screening was performed using highly sensitive droplet digital PCR assay. No tumor samples with baseline C797S were identified. C797S does not occur in TKI-naïve NSCLCs and provide evidence that screening for this mutation before TKIs administration may not be necessary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12253-019-00683-4 | DOI Listing |
Zhongguo Fei Ai Za Zhi
November 2024
Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China.
Background: Mutations in the structural domain of the epidermal growth factor receptor (EGFR) kinase represent a critical pathogenetic factor in non-small cell lung cancer (NSCLC). Small-molecule EGFR-tyrosine kinase inhibitors (TKIs) serve as first-line therapeutic agents for the treatment of EGFR-mutated NSCLC. But the resistance mutations of EGFR restrict the clinical application of EGFR-TKIs.
View Article and Find Full Text PDFJ Drug Target
January 2025
Department of Pharmacology, Orotta College of Medicine and Health Sciences, Asmara University, Asmara, State of Eritrea.
Mutations that overexpress the epidermal growth factor receptor (EGFR) are linked to cancers like breast (15-20%), head and neck (10-15%), colorectal (5-8%), and non-small cell lung cancer (10-50%), especially in East Asian populations. EGFR activation stimulates 'RAS/RAF/MEK/ERK, PI3K/Akt, and MAPK' pathways, which enhance cell division, survival, angiogenesis, and tumour growth while inhibiting apoptosis and metastasis. Secondary mutations (e.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.
Histone lysine-specific demethylase 1 (LSD1) is overexpressed in various solid and hematological tumors, suggesting its potential as a therapeutic target, but there are currently no LSD1 inhibitors available on the market. In this study we employed a computer-guided approach to identify novel LSD1/EGFR dual inhibitors as a potential therapeutic agent for non-small cell lung cancer. Through a multi-stage virtual screening approach, we found L-1 and L-6, two compounds with unique scaffolds that effectively inhibit LSD1 with IC values of 6.
View Article and Find Full Text PDFJ Natl Compr Canc Netw
December 2024
1Division of Thoracic Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
EGFR tyrosine kinase inhibitors (TKIs) have significantly improved clinical outcomes for patients with non-small cell lung cancer (NSCLC) harboring EGFR-activating mutations. However, resistance to TKI therapy often develops due to secondary EGFR mutations or the activation of bypass signalling pathways. Next-generation sequencing (NGS) can efficiently identify actionable genetic alterations throughout treatment.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India. Electronic address:
This Review discusses recent advancements in the development of fourth-generation "Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKIs)" targeting resistance mutations, with an emphasis on the C797S mutation in "Non-small Cell Lung Cancer (NSCLC)". While first, second, and third-generation EGFR-TKIs have made significant progress in overcoming EGFR kinase resistance, the emergence of the EGFR-C797S mutation poses a substantial challenge, particularly in the context of resistance to Osimertinib. Fourth-generation TKIs are classified into ATP-competitive, allosteric, and ortho-allosteric inhibitors, with the goal of enhancing specificity for mutant EGFR while minimizing off-target effects on wild-type EGFR to reduce toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!