Classification of CT Scan Images of Lungs Using Deep Convolutional Neural Network with External Shape-Based Features.

J Digit Imaging

University School of Information and Communication Technology, Guru Gobind Singh Indraprastha University, Dwarka Sector 16C, New Delhi, 110075, India.

Published: February 2020

In this paper, a simplified yet efficient architecture of a deep convolutional neural network is presented for lung image classification. The images used for classification are computed tomography (CT) scan images obtained from two scientifically used databases available publicly. Six external shape-based features, viz. solidity, circularity, discrete Fourier transform of radial length (RL) function, histogram of oriented gradient (HOG), moment, and histogram of active contour image, have also been identified and embedded into the proposed convolutional neural network. The performance is measured in terms of average recall and average precision values and compared with six similar methods for biomedical image classification. The average precision obtained for the proposed system is found to be 95.26% and the average recall value is found to be 69.56% in average for the two databases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064668PMC
http://dx.doi.org/10.1007/s10278-019-00245-9DOI Listing

Publication Analysis

Top Keywords

convolutional neural
12
neural network
12
scan images
8
deep convolutional
8
external shape-based
8
shape-based features
8
image classification
8
average recall
8
average precision
8
average
5

Similar Publications

Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification.

View Article and Find Full Text PDF

Motivation: The drug-disease, gene-disease, and drug-gene relationships, as high-frequency edge types, describe complex biological processes within the biomedical knowledge graph. The structural patterns formed by these three edges are the graph motifs of (disease, drug, gene) triplets. Among them, the triangle is a steady and important motif structure in the network, and other various motifs different from the triangle also indicate rich semantic relationships.

View Article and Find Full Text PDF

The image retrieval is the process of retrieving the relevant images to the query image with minimal searching time in internet. The problem of the conventional Content-Based Image Retrieval (CBIR) system is that they produce retrieval results for either colour images or grey scale images alone. Moreover, the CBIR system is more complex which consumes more time period for producing the significant retrieval results.

View Article and Find Full Text PDF

Background: Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images to predict the classification of pancreatic lesions.

Methods: This retrospective study included 864 patients (422 men, 442 women) with confirmed histopathological results across three medical centers, forming a training cohort, internal testing cohort, and external validation cohort.

View Article and Find Full Text PDF

Semiconductor metal oxide (SMO) gas sensors are gaining prominence owing to their high sensitivity, rapid response, and cost-effectiveness. These sensors detect changes in resistance resulting from oxidation-reduction reactions with target gases, responding to a variety of gases simultaneously. However, their inherent limitations lie in selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!