Rodent populations are known to be reservoirs of viruses with the potential to infect humans. However, a large number of such viruses remain undiscovered. In this study, we investigated the shedding of unknown viruses in long-tailed ground squirrel (Spermophilus undulatus) feces by high-throughput sequencing. A novel and highly divergent virus related to members of the genus Hepacivirus was identified in ground squirrel liver. This virus, tentatively named RHV-GS2015, was found to have a genome organization that is typical of hepaciviruses, including a long open reading frame encoding a polyprotein of 2763 aa. Sequence alignment of RHV-GS2015 with the most closely related hepaciviruses yielded p-distances of the NS3 and NS5B regions of 0.546 and 0.476, respectively, supporting the conclusion that RHV-GS2015 is a member of a new hepacivirus species, which we propose to be named "Hepacivirus P". Phylogenetic analysis of the NS3 and NS5B regions indicated that RHV-GS2015 shares common ancestry with other rodent hepaciviruses (species Hepacivirus E, and species Hepacivirus F), Norway rat hepacivirus 1 (species Hepacivirus G), and Norway rat hepacivirus 2 (species Hepacivirus H). A phylogenetic tree including the seven previously identified rodent hepaciviruses revealed extreme genetic heterogeneity among these viruses. RHV-GS2015 was detected in 7 out of 12 ground squirrel pools and was present in liver, lung, and spleen tissues. Furthermore, livers showed extremely high viral loads of RHV-GS2015, ranging from 2.5 × 10 to 2.0 × 10 copies/g. It is reasonable to assume that this novel virus is hepatotropic, like hepatitis C virus. The discovery of RHV-GS2015 extends our knowledge of the genetic diversity and host range of hepaciviruses, helping to elucidate their origins and evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-019-04303-z | DOI Listing |
Sci Rep
December 2024
Division of Blood Components and Devices, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, 20993, USA.
Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.
View Article and Find Full Text PDFArch Virol
December 2024
Laboratório de Imunologia e Biologia Molecular, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
Viral glycoproteins drive membrane fusion in enveloped viruses and determine host range, tissue tropism and pathogenesis. Despite their importance, there is a fragmentary understanding of glycoproteins within the Flaviviridae, a large virus family that include pathogens such as hepatitis C, dengue and Zika viruses, and numerous other human, animal and emergent viruses. For many flaviviruses the glycoproteins have not yet been identified, for others, such as the hepaciviruses, the molecular mechanisms of membrane fusion remain uncharacterized.
View Article and Find Full Text PDFMol Biol Evol
September 2024
Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising 85354Germany.
Host-pathogen coevolution is defined as the reciprocal evolutionary changes in both species due to genotype × genotype (G×G) interactions at the genetic level determining the outcome and severity of infection. While co-analyses of hosts and pathogen genomes (co-genome-wide association studies) allow us to pinpoint the interacting genes, these do not reveal which host genotype(s) is/are resistant to which pathogen genotype(s). The knowledge of this so-called infection matrix is important for agriculture and medicine.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany.
Phosphatidylcholine (PC) is an essential lipid for liver health and lipoprotein metabolism, but its circulating levels have rarely been studied in patients with cirrhosis. Chronic hepatitis C virus (HCV) infection causes lipid abnormalities and is a major cause of cirrhosis. Effective HCV elimination with direct-acting antivirals (DAAs) is associated with the normalization of serum low-density lipoprotein cholesterol levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!