The duration and distance of manned space flights emphasizes the importance of advanced elucidation of space flight factors and their effects on human beings. The exposure to inflammatory mediators under microgravity may contribute to the activity of different cells, perivascular stromal cells (MSCs) in particular. Inflammatory activation is now considered as a principal cue of MSC engagement in reparative remodeling. In the present paper, the effect of simulated microgravity (sµg) on TNFα-mediated priming of adipose tissue-derived MSC (ASCs) was examined. Sµg per se did not induce inflammatory-related changes, such as elevation of ICAM-1 and HLA-ABC expression, soluble mediator production, or shifting of the transcription profile in ASCs. Moreover, the attenuated ASC response to TNFα priming under sµg was manifested in decreased production of TNFα-dependent pleiotropic cytokines (IL-8 and MCP-1), matrix remodeling proteases, and downregulation of some genes encoding growth factors and cytokines. Time-dependent analysis detected the first signs of priming attenuation after 48 hours of 3D-clinorotation. A reduced response of MSCs to priming under sµg can be a negative factor in terms of MSC involvement in tissue remodeling processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594925PMC
http://dx.doi.org/10.1038/s41598-019-45741-8DOI Listing

Publication Analysis

Top Keywords

simulated microgravity
8
priming sµg
8
microgravity modulates
4
modulates mesenchymal
4
mesenchymal stromal
4
stromal cell
4
cell response
4
response inflammatory
4
inflammatory stimulation
4
stimulation duration
4

Similar Publications

Background: Simulated microgravity environment can lead to gastrointestinal motility disturbance. The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor (SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells. Moreover, intestinal flora can also affect the regulation of SCF/c-kit signaling pathway, thus affecting the expression of Cajal stromal cells.

View Article and Find Full Text PDF

Research into the mechanisms by which gravity influences spermatozoa has implications for maintaining the species in deep space exploration and may provide new approaches to reproductive technologies on Earth. Changes in the speed of mouse spermatozoa after 30 min exposure to simulated weightlessness (by 3D-clinostat) and 2 g hypergravity (by centrifugation) were studied using inhibitory analysis. Simulated microgravity after 30 min led to an increase in the speed of spermatozoa and against the background of an increase in the relative calcium content in the cytoplasm.

View Article and Find Full Text PDF

Spaceflight-induced osteoporosis (SFOP) is a detrimental healthcare consequence during spaceflight. Weightlessness and ionizing radiation were main environmental factors that contribute to SFOP, especially in the manned deep space voyages. However, currently there is scarce effective method to treat SFOP.

View Article and Find Full Text PDF

Introduction: During centrifuge-simulated suborbital spaceplane flights, launch and re-entry frequently cause visual symptoms, and G-induced loss of consciousness can occur. G-related effects may be more prominent during re-entry from microgravity on actual flights. A modified anti-G maneuver that does not involve a breath strain and is suitable for members of the public may be effective against these effects.

View Article and Find Full Text PDF

Introduction: Facial expression perception is the process by which someone can interpret the emotion of another individual using their facial cues. Below-average scores on tests designed to measure facial expression recognition (FER) accuracies are associated with inappropriate behavioral responses and are often linked to mental or neurological disorders. Head-down bed rest microgravity analog studies show changes in facial emotion processing that may indicate a behavioral health risk during spaceflight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!