Co-solvent clustering in complex fluids is fundamental to solution phase processes, influencing speciation, reactivity, and transport. Herein, methanol (MeOH) clustering in supercritical carbon dioxide is explored with pulsed-field gradient, diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY-NMR), and molecular dynamics (MD) simulations. Refinements on the application of self-association models to DOSY-NMR experiments on clustering species are presented. Network analysis of MD simulations reveals an elevated stability of cyclic tetrameric clusters across MeOH concentrations, which is consistent with experimental DOSY-NMR molecular cluster distributions calculated with self-association models that include both cooperative cluster assembly and entropic penalties for the formation of large clusters. Simulations also detail the emergence of cluster-assembly and cluster-disassembly reactions that deviate from stepwise monomer addition or removal. This combination of experiment, simulation, and novel analyses facilitates refinement of models that describe co-solvent aggregation with far-reaching impact on the prediction of solution phase properties of complex fluids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.9b02305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!