Matrix Infrared Spectroscopic and Theoretical Studies for Products Provided in Reactions of Sn with Ethane and Halomethanes.

J Phys Chem A

Department of Chemistry , University of Virginia, P.O. Box 400319, Charlottesville , Virginia 22904-4319 , United States.

Published: July 2019

AI Article Synopsis

Article Abstract

Tin insertion products (oxidation state 2+) were observed in reactions of laser-ablated Sn atoms with ethane, and halomethanes in excess argon, parallel to the Pb reactions. The CSnX bond angles of the observed Sn complexes are close to right angles, and natural bond orbital calculations show that Sn also utilizes mostly its p-orbitals to make chemical bonds. Bridged Sn complexes [CX(X)-SnX] were also provided in reactions of tetrahalomethanes via photo-isomerization of the insertion products, showing that the p-orbitals of Sn are more accessible than those of Pb. These products were identified from the matrix infrared spectra on the basis of isotopic shifts and density functional theory frequencies. Considering the previously reported high-oxidation-state products of the lighter group 14 elements and the Pb products with primarily oxidation state 2+ because of the relativistic effects, the observed Sn complexes show a trend that the high-oxidation-state complexes are less favored with increasing atomic mass in group 14, which is opposite to that observed in transition-metal columns.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.9b04177DOI Listing

Publication Analysis

Top Keywords

matrix infrared
8
provided reactions
8
ethane halomethanes
8
insertion products
8
products oxidation
8
oxidation state
8
observed complexes
8
products
6
infrared spectroscopic
4
spectroscopic theoretical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!