Simulation of impedance changes with a FEM model of a myelinated nerve fibre.

J Neural Eng

Department of Medical Physics, University College London, Gower Street, London WC1E 6BT, United Kingdom.

Published: September 2019

Objective: Fast neural electrical impedance tomography (EIT) is a method which permits imaging of neuronal activity in nerves by measuring the associated impedance changes (dZ). Due to the small magnitudes of dZ signals, EIT parameters require optimization, which can be done using in silico modelling: apart from predicting the best parameters for imaging, it can also help to validate experimental data and explain the nature of the observed dZ. This has previously been completed for unmyelinated fibres, but an extension to myelinated fibres is required for the development of a full nerve model which could aid imaging neuronal traffic at the fascicular level and optimise neuromodulation of the supplied internal organs to treat various diseases.

Approach: An active finite element method (FEM) model of a myelinated fibre coupled with external space was developed. A spatial dimension was added to the experimentally validated space-clamped model of a human sensory fibre using the double cable paradigm. Electrical parameters of the model were changed so that nodal and internodal membrane potential as well as propagation velocity agreed with experimental values. Impedance changes were simulated during activity under various conditions and the optimal parameters for imaging were determined.

Main Results: When using AC, dZ could be recorded only at frequencies above 4 kHz, which is supported by experimental data. Optimal bandwidths for dZ measurement were found to increase with AC frequency.

Significance: The novel fully bi-directionally coupled FEM model of a myelinated fibre was able to optimize EIT for myelinated fibres and explain the biophysical basis of the measured signals.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ab2d1cDOI Listing

Publication Analysis

Top Keywords

impedance changes
12
fem model
12
model myelinated
12
imaging neuronal
8
parameters imaging
8
experimental data
8
myelinated fibres
8
myelinated fibre
8
model
6
myelinated
5

Similar Publications

Background: The IntellaNav MiFi OI catheter (MiFi) is equipped with a sensor for local impedance (LI) monitoring and three mini-electrodes. In this study, we investigated the target LI values for a successful pulmonary vein isolation (PVI) under the pacing and ablation technique using the MiFi catheter.

Methods: Twenty-seven patients underwent PVI using the MiFi catheter under mini electrode pacing from the MiFi catheter.

View Article and Find Full Text PDF

Background: The number of infants born via cesarean section (CS) is increasing globally due to medical and cultural reasons.

Objectives: This study aimed to determine the effect of the mode of delivery on early lung aeration in newborns using electrical impedance tomography (EIT).

Material And Methods: The case-control study was conducted from December 2020 to April 2021.

View Article and Find Full Text PDF

Fast-scan cyclic voltammetry (FSCV) is a widely used electrochemical technique to measure the phasic response of neurotransmitters in the brain. It has the advantage of reducing tissue damage to the brain due to the use of carbon fiber microelectrodes as well as having a high temporal resolution (10 Hz) sufficient to monitor neurotransmitter release in vivo. During the FSCV experiment, the surface of the carbon fiber microelectrode is inevitably changed by the fouling effect.

View Article and Find Full Text PDF

Effects of routine postural repositioning on the distribution of lung ventilation and perfusion in mechanically ventilated patients.

Intensive Crit Care Nurs

January 2025

Department of Intensive Care Medicine, Hospital Universitario de La Princesa, Madrid, Spain; Centro de investigación en red CIBERES de enfermedades respiratorias, Instituto de Salud, Carlos III, Madrid, Spain. Electronic address:

Objectives: To analyse the effects on respiratory function, lung volume and the regional distribution of ventilation and perfusion of routine postural repositioning in mechanically ventilated critically ill patients.

Methods: Prospective descriptive physiological study. We evaluated gas-exchange, lung mechanics, and Electrical Impedance Tomography (EIT) determined end-expiratory lung impedance and regional ventilation and perfusion distribution in five body positions: supine-baseline (S1); first lateralisation at 30° (L1); second supine position (S2), second contralateral lateralisation (L2) and third final supine position (S3).

View Article and Find Full Text PDF

Background: Metabolic and bariatric surgery (MBS) is a suitable solution for the treatment of morbid obesity. Investigating an MBS method that has the best outcomes has always been the main concern of physicians. The current study aimed to compare nutritional, anthropometric, and psychological complications of individuals undergoing various MBS Techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!