Actin assembly produces sufficient forces for endocytosis in yeast.

Mol Biol Cell

Richard D. Berlin Center for Cell Analysis and Modeling, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030.

Published: July 2019

We formulated a spatially resolved model to estimate forces exerted by a polymerizing actin meshwork on an invagination of the plasma membrane during endocytosis in yeast cells. The model, which approximates the actin meshwork as a visco-active gel exerting forces on a rigid spherocylinder representing the endocytic invagination, is tightly constrained by experimental data. Simulations of the model produce forces that can overcome resistance of turgor pressure in yeast cells. Strong forces emerge due to the high density of polymerized actin in the vicinity of the invagination and because of entanglement of the meshwork due to its dendritic structure and cross-linking. The model predicts forces orthogonal to the invagination that are consistent with formation of a flask shape, which would diminish the net force due to turgor pressure. Simulations of the model with either two rings of nucleation-promoting factors (NPFs) as in fission yeast or a single ring of NPFs as in budding yeast produce enough force to elongate the invagination against the turgor pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727779PMC
http://dx.doi.org/10.1091/mbc.E19-01-0059DOI Listing

Publication Analysis

Top Keywords

turgor pressure
12
endocytosis yeast
8
actin meshwork
8
yeast cells
8
simulations model
8
forces
6
yeast
5
model
5
invagination
5
actin
4

Similar Publications

Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.

View Article and Find Full Text PDF

Metabolic analysis reveals the contribution of mechanosensitive channel MscM to extracellular release of glutamate in glycogen-deficient Synechococcus elongatus.

J Biosci Bioeng

December 2024

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. Electronic address:

In bacteria, mechanosensitive channels mediate extracellular release of osmolytes, including glutamate, functioning as safety valves upon osmotic downshift. In cyanobacteria, the role of mechanosensitive channels has not been completely elucidated. Recently, the glycogen-deficient ΔglgC mutant of Synechococcus elongatus PCC 7942 was found to release glutamate extracellularly, giving rise to a hypothesis that the role of mechanosensitive channels in cyanobacteria is conserved.

View Article and Find Full Text PDF

Background: The entomopathogenic fungus (EPF) Metarhizium acridum, a typical filamentous fungus, has been utilized for the biological control of migratory locusts (Locusta migratoria manilensis). Fungal-specific transcription factors (TFs) play a crucial role in governing various cellular processes in fungi, although TFs with only the Fungal_trans domain remain poorly understood.

Results: In this study, we identified a unique fungal-specific TF in M.

View Article and Find Full Text PDF

Effect of osmotic pressure on membrane permeation through antimicrobial peptide-induced pores.

Biochem Biophys Res Commun

December 2024

Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan; Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, 422-8529, Japan; Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan. Electronic address:

Most antimicrobial peptides (AMPs) induce membrane damage such as pore formation in bacterial cells, resulting in rapid cell death. On the other hand, bacterial cells have a large intracellular turgor pressure, i.e.

View Article and Find Full Text PDF

Several agriculturally valuable plants store their pollen in tube-like poricidal anthers, which release pollen through buzz pollination. In this process, bees rapidly vibrate the anther using their indirect flight muscles. The stiffness and resonant frequency of the anther are crucial for effective pollen release, yet the impact of turgor pressure on these properties is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!