Many studies have explored the role of TSPO (18 kDa translocator protein) as a marker of neuroinflammation using single-photon emission computed tomography (SPECT) or positron emission tomography (PET). In vivo imaging does not allow to determine the cells in which TSPO is altered. We propose a methodology based on fluorescence-activated cell sorting to sort different cell types of radioligand-treated tissues. We compared left/right hippocampus of rats in response to a unilateral injection of lipopolysaccharide (LPS), ciliary neurotrophic factor (CNTF) or saline. We finally applied this methodology in human samples (Alzheimer's disease patients and controls). Our data show that the pattern of TSPO overexpression differs across animal models of acute neuroinflammation. LPS induces a microglial expansion and an increase in microglial TSPO binding. CNTF is associated with an increase in TSPO binding in microglia and astrocytes in association with an increase in the number of microglial binding sites per cell. In humans, we show that the increase in CLINDE binding in Alzheimer's disease concerns microglia and astrocytes in the presence of a microglial expansion. Thus, the cellular basis of TSPO overexpression is condition dependent, and alterations in TSPO binding found in PET/SPECT imaging studies cannot be attributed to particular cell types indiscriminately.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238369PMC
http://dx.doi.org/10.1177/0271678X19860408DOI Listing

Publication Analysis

Top Keywords

tspo binding
12
fluorescence-activated cell
8
cell sorting
8
cell types
8
alzheimer's disease
8
tspo overexpression
8
microglial expansion
8
microglia astrocytes
8
tspo
7
binding
6

Similar Publications

Chronic neuropathic pain is a debilitating condition that results from damage to the nervous system. Current treatments are largely ineffective, with limited understanding of the underlying mechanisms hindering development of effective treatments. Preclinical models of neuropathic pain have revealed that non-neural changes are important for the development of neuropathic pain, although these data are derived almost exclusively from post-mortem histological analyses.

View Article and Find Full Text PDF

The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO).

View Article and Find Full Text PDF

[F]SF51 is a novel radioligand for imaging translocator protein 18 kDa (TSPO) that previously displayed excellent imaging properties in nonhuman primates. This study assessed its performance in human brain and its dosimetry. Seven healthy participants underwent brain PET imaging to measure TSPO binding using a two-tissue compartment model (2TCM) to calculate total distribution volume ().

View Article and Find Full Text PDF
Article Synopsis
  • The translocator protein 18 kDa (TSPO) plays a key role in cholesterol movement for steroid production and serves as a marker for neuroinflammation, linking it to neurodegenerative and neuropsychiatric disorders.
  • The review focuses on the structural diversity and modifications of TSPO ligands, showcasing advancements in their design for better binding effectiveness and specificity.
  • It also highlights the progress of some TSPO ligands that are currently in clinical trials, aiming to inform researchers about structure-activity relationships for potential new therapies targeting TSPO in neuroinflammatory diseases.
View Article and Find Full Text PDF

Septic cardiomyopathy (SCM) is a critical complication of sepsis, primarily attributed to mitochondrial dysfunction and impaired autophagic flux. This study explores the role of translocator protein (TSPO) in SCM pathogenesis and assesses its potential as a therapeutic target. We identified increased TSPO expression in plasma samples from sepsis patients, with further validation in septic rats and LPS-stimulated H9C2 cardiomyocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!