Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Noble metals with strong plasmons have been widely used as enhancement substrates for molecule identification. However, cyanide, a toxic and important signaling molecule with a corrosive nature to noble metals, makes direct recognition challenging. Herein a novel superstable magnetic graphene-isolated AuCo nanocrystal (MACG) has been designed. Such graphene isolation enables superior stability without corrosion. Moreover, unexpectedly, although graphene isolated direct contact between Au and cyanide, their interaction was transferable and remained, which gifted MACGs direct cyanide capture capability with no specific ligands needed. Density functional theory calculations and natural bond orbital analysis indicated that the graphene isolation only slightly affected the charge transfer and that a relatively strong interaction was maintained between Au and cyanide. MACGs were utilized for efficient cyanide capture and clearance in various hydrologic environments and sensitive in vivo cyanide capture in infected with , a pathogen with cyanide as the biomarker, indicating promise for various applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b01811 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!