Emerging epidemiological and preclinical studies have focused on statins and mevalonate pathway to identify potential therapeutic target and clarify the underlying mechanism of the anti-neoplastic effects. Reductions of mevalonate or isoprenoids, caused by statins, would further decrease the isoprenylation of Rho GTPases which is the crucial step for Rho GTPases to anchor on inner cellular membrane. Following anchoring, activated Rho GTPases can mediate a series of cellular activities such as cytoskeleton reprogramming, front-rear polarity, and cell-ECM adhesion. These changes not only facilitate tumor cell detachment and migration but also bring great mechanical changes to directly activate YAP, the major nuclear mechanotransducer, to translocate into nucleus. Recently, statins have been identified as potent inhibitors of YAP. Once entering nucleus, YAP would combine TEADs to promote the transcription of about 100 genes, which are involved in cell proliferation, cell cycle regulation, stemness, invasion, and metastasis. Besides, statins are able to promote the degradation of misfolded mutant p53 (mutp53), which is an oncogene in a variety of human malignancies. Reduction in mevalonate-5-phosphate (MVP), also induced by statins, would impair the stability of DNAJA1-mutp53 complex; then, elevated C terminus of Hsc70-interacting protein (CHIP) mediates the nuclear export and degradation of misfolded mutp53 through ubiquitin-proteasome pathway. It is worth noted that YAP, mutp53, and mevalonate pathway form two positive feedback loops. It is reasonable to believe that Rho GTPases, YAP, and mutp53 are determinants for statins as anti-cancer agents: tumor cells harboring mutp53 and nuclear-located YAP would be more sensitive to statins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/fcp.12495 | DOI Listing |
Oncol Res
January 2025
Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
Background: Rho GTPases are essential regulators for cellular movement and intracellular membrane trafficking. Their enzymatic activities fluctuate between active GTP-bound and inactive GDP-bound states regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39/Vilse/Porf-2 is a newly identified GAP.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.
RACGAP1 is a Rho-GTPase-activating protein originally discovered in male germ cells to inactivate Rac, RhoA and Cdc42 from the GTP-bound form to the GDP-bound form. GAP has traditionally been known as a tumor suppressor. However, studies increasingly suggest that overexpressed RACGAP1 activates Rac and RhoA in multiple cancers to mediate downstream oncogene overexpression by assisting in the nuclear translocation of signaling molecules and to promote cytokinesis by regulating the cytoskeleton or serving as a component of the central spindle.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea.
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!